US EPA RECORDS CENTER REGION 5

SOIL BORING AND MONITORING WELL INSTALLATION

DAYTON ELECTROPLATE, INC. 1030 VALLEY STREET DAYTON, OHIO

TECHNOLOGIES, INC.

December 16, 1999

Mr. Randy Watterworth Ohio Environmental Protection Agency Division of Emergency and Remedial Response Southwest District Office 401 East Fifth Street Dayton. Ohio 45402-2911

Regarding: Soil Boring and Monitoring Well Installation

Dayton Electroplate, Inc.

1030 Valley Street, Dayton, Ohio

Ohio EPA Mobilization Order No. 557-09

PN 60008.11

Dear Mr. Watterworth:

PSARA Technologies. Inc. (PSARA) is pleased to submit this letter report describing the installation of six soil borings and monitoring wells at the subject site (Figure 1). Midwest Environmental Drilling, under the direction of PSARA geologist, Mr. Tim O'Dowd, installed the borings/monitoring wells in the area around two former underground storage tank (UST) pits and other areas of interest (Figure 2). The following describes the field activities. All work was performed in accordance with PSARA's Work Plan dated August 16, 1999, and Ohio Environmental Protection Agency (EPA) Mobilization Order No. 557-09.

SUMMARY OF FIELD ACTIVITIES

Soil Boring and Soil Sampling

From August 23 through August 26, 1999, PSARA installed six soil borings/monitoring wells (MW-1 through MW-6) at the site. The soil boring locations are shown on the map in Figure 2.

Prior to the start of drilling, PSARA notified the Ohio Utilities Protection Service (OUPS), which instructed its members to mark the locations of underground utilities at the site. To further guard against drilling through mismarked or unknown underground utilities, the first 3 ft of each boring were advanced at a slow rate.

Borings were advanced using 4.25-in.-ID hollow-stem augers to an average depth of 42 ft. Soil samples were collected continuously from each boring using a 2-in.-diameter split-spoon sampler.

ENVIRONMENTAL CONSULTANTS

10925 REED HARTMAN HIGHWAY SUITE 220 CINCINNATI, OH 45242 TEL: 513.791.4418 FAX: 513.791.5797 E-MAIL: mailbox@psara.com Mr. Randy Watterworth December 16, 1999 Page 2

PSARA's onsite geologist described the samples in the field as the borings were advanced. In general, the soils encountered beneath the site consisted of undifferentiated fill material overlying poorly sorted sand and gravel. The fill apeared to be largely construction debris with visible brick, glass, and slag present. Fine-grained, well-sorted, multi-colored sand discovered between 2 and 3 ft below grade at boring SB-3 is believed to be foundry sand. The native soil comprises poorly sorted sand with gravel and silt. Numerous clayey layers and lenses and a few cobble layers were observed at various depths in each boring. Detailed descriptions of the subsurface material from each boring are presented in the Soil Boring Logs in Attachment A.

In general, groundwater was encountered within the sands at a depth of approximately 32 ft. Upon drilling into saturated conditions, "heaving" sands were observed to be flowing into the annulus of the hollow-stem augers. Where heaving was observed, split-spoon sampling was suspended so that the tools would not be lost.

The split-spoon sampler was decontaminated between each sample with a nonphosphate detergent wash and tap water rinse to prevent cross-contamination of samples. The augers, drill rods, and split-spoons were cleaned prior to and following drilling activities using a steam/pressure washer.

Soil vapor screening was conducted in the field using a photoionization detector (PID). The PID is factory calibrated annually. Also, before each use, a PSARA technician calibrates the PID according to the following procedure: fill then purge a plastic Tedlar bag with zero air: fill the Tedlar bag with a standard consisting of 100 ppm isobutylene balanced with zero air: insert the probe of the PID into the Tedlar bag and close it with an airtight seal: and adjust the instrument's span (calibration device) to read 56 ppm. During sample screening, the split-spoon sampler was opened to reveal the sample core, and the probe of the PID was held within 1 in. of the soil surface. The soil vapor analysis results are included on the Soil Boring Logs in Attachment A.

Monitoring Well Installation and Development

PSARA installed groundwater monitoring wells MW-1 through MW-6 to intercept first groundwater in the corresponding soil borings. Well construction consisted of 2-in.-diameter, flush-threaded polyvinylchloride (PVC) riser pipe coupled to a 10-ft section of 0.010-in. machine-slotted PVC well screen. The well screen was surrounded by a filter pack of coarse, washed quartz sand and sealed with a 2-ft layer of bentonite. Because the wells were installed into an aquifer with heaving sands, an unknown amount of each screen section is assumed to be surrounded by natural sand.

Following placement of the filter pack and bentonite seal, the remaining augers were removed from the boring, and the annulus was allowed to cave naturally. The remaining annulus was then filled with bentonite chips and topped with Portland cement. A locking well seal was placed on each well to prevent tampering. Further well protection was provided by a 5.5-in. boltdown, flush-mounted protective cover installed in a 2-ft by 2-ft concrete pad. Two wells, MW-3 and MW-6, were given further protection using standpipes and steel posts instead of the flush-mounted covers. Well construction details are presented on the Well Construction Diagrams in Attachment A.

On August 26 and 27, 1999, a PSARA geologist developed the newly installed wells to remove excess fine particulates. Prior to well development, PSARA measured the depth

Mr. Randy Watterworth December 16, 1999 Page 3

to groundwater and checked each well for the presence of light nonaqueous-phase liquid (LNAPL) with an oil/water interface probe. No LNAPL was encountered on this date. Depth-to-groundwater measurements are reported on the Well Development Logs in Attachment B. Ground surface elevations, top-of-casing elevations, and depth-to-groundwater measurements obtained on September 29, 1999, are summarized in Table 1.

Monitoring well development consisted of surging each well with a Teflon surge block, then purging water from the well with a decontaminated submersible pump and dedicated tygon tubing. The pump was decontaminated between wells to prevent crosscontamination using a nonphosphate detergent wash, tap water rinse, and deionized water rinse. The well was determined to be properly developed when one of the following criteria had been met: 1) at least five well volumes of water had been removed, 2) the pH readings were within 0.2 S.U. of the corresponding measurement for the previous well volume and the specific conductance and temperature readings were within 10 percent of the corresponding measurements for the previous well volume, or 3) the well was purged dry. The surge block could not be used in MW-1 because of a slight bend in the PVC casing. The Well Development Logs are included in Attachment B.

Monitoring Well Surveying

PSARA contracted a registered surveyor to survey the locations and elevations of the newly installed wells. Wells were surveyed relative to mean sea level and Ohio State Plane coordinates. As a convention, a point on the north side of the PVC casing was used as a standard survey point. PSARA returned to the site on December 2, 1999, to survey the ground surface elevation at each well location. The results of this survey are included in Attachment C and listed in Table 1.

Management of Investigation-Derived Waste (IDW)

All auger cuttings from the installation of the six monitoring wells at the site were placed in 55-gal drums for future disposal by the Ohio EPA. Four composite samples were collected from these drums and analyzed for the toxicity characteristic by Quanterra Incorporated in North Canton. Ohio, in acordance with the U.S. EPA's Toxicity Characteristic Leaching Procedure (TCLP). Method 1311 (55FR 26986). All samples were non-detect for TCLP parameters. The laboratory analytical report is included in Attachment D.

Purge water from well development activities was collected in 5-gal buckets and transferred to an onsite sanitary sewer. This water was discharged to the sewer with the approval of the City of Dayton.

Variances

Due to difficulties associated with the heaving sands encountered in each boring, several modifications to the Approved Work Plan were required to complete the scope of work. Each variance to the Work Plan, along with the corrective action is listed below:

• Due to sand heave, complete filter packs were not installed. The natural sand that entered the auger annulus during well construction was allowed to remain.

Mr. Randy Watterworth December 16, 1999 Page 4

- During drilling, it was noted that nearly the entire soil column consisted of sand and gravel. Upon determining that the drillers were unable to install a Portland Cement grout over the well seal, the decision was made in the field to allow the annulus to cave naturally.
- Difficulties were encountered during the installation of MW-1 and MW-6. Specifically, the bentonite seal became bridged during installation and jammed the well in the augers. These wells were consequently removed, redrilled, and reinstalled.

We appreciate the opportunity to assist the Ohio EPA with this project. If we can be of further assistance, please do not hesitate to call me.

Sincerely,

PSARA TECHNOLOGIES, INC.

Timothy P. O'Dowd Project Geologist

Attachments

	TABLES	

Table 1. Groundwater Elevations August 27, 1999 Dayton Electroplate, Inc. 1030 Valley Street, Dayton, Ohio

Well No.	Top of Casing Elevation, ft ^a	Ground surface Elevation, ft ^a	Depth to Groundwater, ft	Groundwater Elevation, ft ^a	LNAPL ^b Thickness, ft
MW-I	656.46	656.73	30.12	626.34	0
MW-2	657.38	657.62	33.69	623.69	0
MW-3	658.48	655.21	35.19	617.98	0
MW-4	654.44	654.25	27.77	626.67	0
MW-5	657.50	657.74	30.84	626.66	0
MW-6	660.21	657.53	33.31	626.90	0

^a Elevation measured relative to mean sea level.

b LNAPL = light nonaqueous-phase liquid.

LEGEND

Monitoring Well Location

4, MW-5

OHIO EPA

Figure 2.
Site Layout Map
Dayton Electroplate Site
Dayton, Montgomery County, Ohio

Date:

8/4/99

Project Number:	Scale:	Checked By.	Drawn By:
60008.11	1"=100'	SAS	RJS

Project No.	60008.11
Boring No.	MW-1
Page	1 of3

^ · -	1 1	
Genera	i into	rmation

Client: Ohio Environmental Protection Agency	Boring No.: MW-1
Site Location: Dayton Electroplate, 1030 Valley Street	Date(s) Drilled: August 23, 1999
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 42
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 31 ft
Headspace Screening Instrument: X PID _ FID	Well installed: ☒ Yes ☐ No Well No.: MW-1

Sample No.		nple th (ft)	Recovery (in)	Blow	Comple/Core Description		space g (ppm)
Sample No.	From	То	Reco	Count	Sample/Core Description	Total Organic	Total Methane
	0	2			Concrete, no sample taken.		
MW-1-0204	2	4	17	7-12-16-18	Fill material, 1/4" - 1" gravel, with some brown	0	
					silty clay loam and gray sand, very		
				-	unconsolidated, poorly sorted.		
MW-1-0406	4	6	20	10-10-12-12	Fill (4'-5.5'), same as above, w/ some red brick	0	
					fragments.		
					Sand w/ gravel (5.5'-6'), light brown, loose,		
					poorly sorted sand, with approx, 50% 1/4"-1/2"		
					gravel, probably still fill material.		
MW-1-0608	6	8	15	12-12-13-14	Sand w/ gravel (6'-8'), same as above.	0	
MW-1-0810	8	10	14	10-12-18-18	Sand & gravel (8'-9.25'), poorly sorted, grayish	0	
					sand w/ 1/16" - 1" cobbles, some limestone		
					cobbles about 1" in dia., some smaller		
					sandstone cobbles fragments at 8.5', slight		
				_	natural gas odor.		
MW-1-1012	10	12	18	25-16-16-1 6	Sand & gravel, same as above, upper 4" darker	0	
					brown then gray sand, w/ 50% gravel, some		
					large limestone cobbles about 1.5" dia.		

Notes	 								
							 		 _
	 	 	 _		_	_			

Project No.	60008.11					
Boring No.	MW-1					
Page	of3					

From 12	To 14	Recovery (in)	Count	Sample/Core Description	T	
12	14				Total Organic	Total Methane
··		18	25-16-16-1	Sand w/ gravel (12'-12.5'), same as above.	0	
				Sand (12.5'-13') fairly abrupt contact w/ a		
				multi-colored, medium-grained, sand, wet, w/		
				approx. 30% gravel (1/16"-1/2" dia.), damp,		
				slight natural gas odor.		
14	16	16	20-20-20-20	Sand & gravel (14'-15.25'), very poorly sorted	0	
				sand w/ limestone, chert and sandstone		
				cobbles, 1/16"-1/8" in dia.		
		40	40.40.44.40	Court 8 amount (4C) 4C FIX court on the court		
16	18	12	10-10-11-12		0	
				· · · · · · · · · · · · · · · · · · ·		·
		ļ		grains.		
18	20	12	12-12-12-14	Sand & gravel (18'-19'), poorly sorted, grayish	0	
				sand, w/ 1/16"-1" dia. cobbles, limestone &		
				chert, small 1" layer of fine-grained sand from		_
				above in upper part of spoon.		
20	22	18	20-17-12-12	Sand & gravel (20'-21.5'), same as above,	0	
				small fine-grain sand stringer @ 20.75', very		
				poorly sorted throughout, same natural gas	-	
				odor.		
22	24	24	25-19-20-26	Sand & gravel (22'-23'), same as above.	0	
				Sand & gravel (23'-24'), abrupt contact w/ a		
	_			slightly better-sorted sand & gravel, iron		
				staining, smaller cobbles w/ a multi-colored		
				sand.		
	16	16 18 18 20 20 22	16 18 12 18 20 12 20 22 18	16 18 12 10-10-11-12 18 20 12 12-12-14 20 22 18 20-17-12-12 22 24 24 25-19-20-26	slight natural gas odor. 14 16 16 20-20-20-20 Sand & gravel (14'-15.25'), very poorly sorted sand w/ limestone, chert and sandstone cobbles, 1/16"-1/8" in dia. 16 18 12 10-10-11-12 Sand & gravel (16'-16.5'), same as above. Sand (16.5'-17'), fine-grained, well sorted, light brown sand, loose, damp, w/ some quartz grains. 18 20 12 12-12-14 Sand & gravel (18'-19'), poorly sorted, grayish sand, w/ 1/16"-1" dia. cobbles, limestone & chert, small 1" layer of fine-grained sand from above in upper part of spoon. 20 22 18 20-17-12-12 Sand & gravel (20'-21.5'), same as above, small fine-grain sand stringer @ 20.75', very poorly sorted throughout, same natural gas odor. 22 24 24 25-19-20-26 Sand & gravel (22'-23'), same as above. Sand & gravel (23'-24'), abrupt contact w/ a slightly better-sorted sand & gravel, iron	slight natural gas odor. 14 16 16 20-20-20-20 Sand & gravel (14'-15.25'), very poorly sorted 0 sand w/ limestone, chert and sandstone cobbles, 1/16"-1/8" in dia. 16 18 12 10-10-11-12 Sand & gravel (16'-16.5'), same as above. 0 Sand (16.5'-17'), fine-grained, well sorted, light brown sand, loose, damp, w/ some quartz grains. 18 20 12 12-12-14 Sand & gravel (18'-19'), poorly sorted, grayish 0 sand, w/ 1/16"-1" dia. cobbles, limestone & chert, small 1" layer of fine-grained sand from above in upper part of spoon. 20 22 18 20-17-12-12 Sand & gravel (20'-21.5'), same as above, 0 small fine-grain sand stringer @ 20.75', very poorly sorted throughout, same natural gas odor. 22 24 24 25-19-20-26 Sand & gravel (22'-23'), same as above. 0 Sand & gravel (23'-24'), abrupt contact w/ a slightly better-sorted sand & gravel, iron staining, smaller cobbles w/ a multi-colored

Notes							
	 	_				_	

Project No.	60008.11						
Boring No.	MW-1						
Page	3_	_ of _	3				

Comple No		nple th (ft)	Recovery (in)	Blow Sample/Core Description		Head: Readin	space g (ppm)
Sample No.	From	То	Reco	Count	Sample/Core Description	Total Organic	Total Methane
MW-1-2426	24	26	24	24-20-16-16	Sand & gravel (24'-25.5'), same as above.	0	
					Sand (25.5'-26'), fine-grained, soft, well sorted,		
					light brown sand, no gravel, some iron staining.		
MW-1-2628	26	28	24	40-18-20-25	Sand & gravel (26'-27'), poorly sorted, light	0	
					brown sand, w/ 1/4"-1/2" cobbles.		
					Sand (27'-27.5'), fine-grained, well sorted, light		
					brown sand, loose, some iron stains.		
					Sand & gravel (27.5'-28'), same as above, w/		
					large 1" dia. limestone fragments.		
MW-1-2830	28	30	20	28-25-25-25	Sand & gravel, same as above, getting more	0	
					damp, 1/4"-1" dia. cobbles.		
MW-1-3032	30	32	15	16-10-10-7	Sand & gravel (30'-30.75') , same as above. Sand	0	
					& gravel (30.75'-31.25'), abrupt contact w/ wet		
					poorly sorted sand & gravel.		
					Channel culti among compling and drilled to 42		
		_	-		Stopped split spoon sampling and drilled to 42		-
					feet per Mr. Watterworth w/ OEPA.		
-	_						
						-	
		-					
						<u></u>	

Ν	O	te	25	

	Ent'd by: TPO
	Ck'd by: JMH
	Date: 12/15/99

Project No.	600	08.11	_
Boring No.	M	W-2	_
Page	_1_	of <u>3</u>	_

General Information

Client: Ohio Environmental Protection Agency	Boring No.: MW-2				
Site Location: Dayton Electroplate. 1030 Valley Street	Date(s) Drilled: August 23, 1999				
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA				
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 42				
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 30 ft				
Headspace Screening Instrument: 🔀 PID 🗀 FID	Well Installed: ☒ Yes ☐ No Well No.: MW-2				

Sample No.	le No. Sample Depth (ft) From To E Sample Count Sample/Core Description			space g (ppm)			
Sample No.	From	То	Reco	Count	Sample/Core Description	Total Organic	Total Methane
	0	2			Concrete & fill, no sample taken.		
MW-2-0204	2	4	20	2-2-3-3	Clay, light brown silty clay, plastic, w/ some	0	
					large 1" cobbles, upper 3" of sample darker		
	<u> </u>				brown.		
MW-2-0406	4	6	6	2-2-3-4	Poor recovery, 3" of clay similar to above, sand	0	
					& gravel last 3", poorly sorted light brown sand		
					w/ large 1" dia. limestone cobbles.		
MW-2-0608	6	8	6	4-6-7-7	Clay, dark brown silty clay, very soft & plastic,	0	
	 	· · ·			w/ approx. 5% 1/8" dia. gravel.		
MW-2-0810	8	10	12	5-6-6-7	Clay (8'-8.25'), same as above.	0	
					Sand & gravel (8.25'-9'), light brown, poorly		
	ļ				sorted sand & gravel w/ 1/8" - 1" limestone &		
	-				chert cobbles, slight "natural gas" odor.		
MW-2-1012	10	12	15	10-10-12-12	Sand & gravel, poorly sorted, multi-colored	0	
		'			sand, w/ 50% 1/16" - 1" dia. gravel & cobbles.		
MW-2-1214	12	14	12	6-11-12-12	Sand & gravel, same as above.	0	
MW-2-1416	14	16	10	15-13-10-10	Sand & gravel, same as above.	0	

ivotes	N	otes	
--------	---	------	--

,	 	 	 	 	 	 		 	 	 	
ı											
۱											
ł	 	 						 	 	 	
ł											
1	 	 	 				 	 	 	 	
ı											
ŧ											

Project No.	60008.11				
Boring No.	MW-2				
Page	of3				

	Sample No. Sample Depth (ft) Sample Sam			dspace ng (ppm)			
Sample No.	From	То	Reco (in	Count	Sample/Core Description	Total Organic	Total Methane
MW-2-1618	16	18	17	7-9-9-10	Sand & gravel, slightly better sorting, some	0	
					moisture, some iron staining, same "natural		
					gas" odorend of day-		
MW-2-1820	18	20	15	5-5-5-7	Sand & gravel, same as above.	0	
MW-2-2022	20	22	15	8-11-15-15	Sand & gravel, same as above, large 1"	0	
		_			limestone cobbles throughout.		
MW-2-2224	22	24	17	6-25-30-30	Sand & gravel, same as above, with a small,	0	
		· · · · · · · · · · · · · · · · · · ·			light brown silty clay lense @ 22.25'.		
MW-2-2426	24	26	15	12-18-15-15	Sand & gravel, same as above, w/o the lense.	0	
MW-2-2628	26	28	18	15-20-25-27	Sand & gravel, same as above, consistently	0	
					unsorted in entire boring so far.		
MW-2-2830	28	30	18	12-20-15-15	Sand & gravel, same as above, not as many	0	
					large cobbles as above.		
MW-2-3032	30	32	12	12-9-7-7	Sand & gravel, multi-colored sand, w/ 1/8"-1/2"	0	
·-··					mixed cobbles, entire sample wet, water @ 30'.		
MW-2-3234	32	34	15	10-13-9-7	Sand & gravel, same as above, very wet.	0	
MW-2-3436	34	36	15		Sand & gravel, saturated, more gravel than	0	
					above, approx. 50% 1/4"-1/2" dia.		
MW-2-3638	36	38	12	6-8-6-9	Sand & gravel, same as above, saturated.	0	
MW-2-3840	38	40	15	8-8-8-8	Sand & gravel, same as above, w/ 1" sand	0	
				:	stringers @ 38.25' & 39', saturtated.	:	

Notes				
		·	· -	

Project No.	60	008.11	L			
Boring No.	MW-2					
Page	3	_ of _	3			

Sample No.	Sar Dep	mple th (ft)	Recovery (in)	Blow	Sampla/Cara Description	Head: Reading	space g (ppm)
Sample No.	From	То	Rec(Count	Sample/Core Description	Total Organic	Total Methane
MW-2-4042	40	42	24	12-15-20-24	Sand, medium-grained, multi-colored sand, w/	0	
					approx. 10% 1/8"-1/6" gravel, saturated.		
		_					
					200		
			'				
-							

Ν	ot	es
---	----	----

Ent'd by: TPO
Ck'd by: JMH
Date: 12-15-99

Project No.	60	008.1	1
Boring No.		/W-3	
Page	1_	_ of _	3

General Information

Client: Ohio Environmental Protection Agency	Boring No.: MW-3			
Site Location: Dayton Electroplate. 1030 Valley Street	Date(s) Drilled: August 24, 1999			
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA			
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 40			
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 32.5 ft			
Headspace Screening Instrument: X PID FID	Well Installed: ☒ Yes ☐ No Well No.: MW-3			

Sample No.		Sample Depth (ft)		Blow	On marks (Ones Deposite tiers	Headspace Reading (ppm)	
Cample No.	Sample No. Sample Depth (ft) Sample Sample Sample Sample Core Description		Sample/Core Description	Total Organic	Total Methane		
	0	2			Fill, no sample taken.		
MW-3-0204	2	4	12	6-3-3-3	Gravel & fill material (2'-2.25'), dark brown fill &	0	
					gravel.		
					Sand (2.25'-3') banded purple, gray, & brown,		
	-				fine-grained sand, probably founders sand.		
		<u></u>			Sand & gravel (3'-3.25'), black, stained, fine-	0.7	
					grained sand, w/ a 1" limestone cobble, slight unknown odor.		
MW-3-0406	4	6	10	2-2-2-2	Sand, same as above, yellow, gray, black,	0	
	7		10		no odor.		
MW-3-0608	6	8	20	3-3-3-3	Sand, same as above, no odor.	0	
MW-3-0810	8	10	22	4-2-2-2	Sand, same as above, no odor.	0	
MW-3-1012	10	12	20	5-3-2-2	Sand, same as above, no odor.	0	
MW-3-1214	12	14	12	5-1-1-1	Sand, same as above, 2" of "slag" at bottom of	0	
					sample, porous pummice -like material,		
					resultant of extreme heat, wet.	_	

]			
ı				
ì				

Project No.	60008.11				
Boring No.		<u> MW-3</u>			
Page	2	_ of _	3		

		nple	>			Heads	space
Sample No.	Dept		Recovery (in)	Blow	Sample/Core Description	Reading	
,	From	То	Rec	Count		Total Organic	Total Methane
MW-3-1416	14	16	16	25-16-16-16	Sand (14'-14.25'), same as above, dry.	0	
					Clay (14.25'-15'), light reddish brown, silty clay		
					w/ approx. 20% 1/16"-1/4" gravel, plastic,		
					weathered.		
			_		Gravel (15'-15.25'), light brown yellowish clay		
					matrix w/ approx. 70% gravel, 3 inches.		
MW-3-1618	16	18	20	8-6-5-5	Clay (16'-16.5'), dark brown silty clay w/ gravel.	0	
					Sand & gravel (16.5'-17.75'), yellowish brown		
					medgrained sand w/ approx. 50% 1/16"-1/4"		
					dia. cobbles, very dry.		
MW-3-1820	18	20	12	8-7-5-6	Sand & gravel, same as above.	0	
MW-3-2022	20	22	12	5-9-10-10	Sand & gravel, same as above.	0	
MW-3-2224	22	24	24	18-14-16-16	Sand & gravel, same as above, w/ somewhat	0	
					larger (1/2" dia.) gravel throughout.		
MW-3-2426	24	26	15	18-17-17-17	Sand & gravel, same as above, sand is coarser,	0	
					more gravel, approx. 60% 1/4"-1" dia.		
MW-3-2628	26	28	18	16-19-25-27	Sand & gravel, same as above, w/ slightly	0	
				10-10-20-27	smaller gravel.		
					Cond 9 manual company		
MW-3-2830	28	30	20	17-17-18-19	Sand & gravel, same as above.	n/a	
					PID temporarily out of order, moisure in display,		
					removed from rainy site conditions.		
							*

Notes						
	 	 	<u>. </u>		 	 <u>-</u>
		 		<u></u>		

Project No.	60008.11				
Boring No.	MW-3				
Page	of3				

Sample No.	Sample Depth (ft)		Recovery (in)	Blow	Comple/Core Description		space g (ppm)
Sample No.	From	То	Reco	Count	Sample/Core Description	Total Organic	Total Methane
MW-3-3032	30	32	15	19-20-22-23	Sand & gravel (30'-30.5'), same as above.	n/a	
					Sand (30.5'-31.25'), abrupt contact w/ a		
					multi-colored, medgrained sand, loose, damp,		
					some iron staining.		
MW-3-3234	32	34	20	20-12-12-15	Sand w/ gravel (32'-32.5'), dry, approx. 30%	n/a	
					1/2"-1" gravel.		
					Sand (32.5'-33.75') medgrained, wet sand, w/		
					approx. 20% 1/16"-1/8" dia. gravel, saturated,		
					water @ approx. 32.25'.		
MW-3-3436	34	36	20	12-14-20-12	Sand & gravel, medgrained, multi-colored	n/a	
					sand, w/ approx. 30% 1/4"-1" dia. cobbles,		
					saturated.		
MW-3-3638	36	38	24	10-10-18-20	Sand, same sand but without the gravel, med.	n/a	
					grained to coarse multi-colored, saturated sand.		
MW-3-3840	38	40	24	60-22-28-40	Sand, same as above.	n/a	
					Went to drive next split spoon, approx. 5 ft of		
					sand had heaved into the augers.		
					Discontinued sampling, drilled to 44' and set		
					well @ 42'.		
	<u> </u>						
				_			

N	Ю	t	е	٤
---	---	---	---	---

	 Ent'd by: TPO
	 Ck'd by: JMH
	Date: 12-15-99

Project No.	60008.11
Boring No.	MW-4
Page	of3

General Information

Client: Ohio Environmental Protection Agency	Boring No.: MW-4
Site Location: Dayton Electroplate, 1030 Valley Street	Date(s) Drilled: August 25, 1999
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 38
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 26 ft
Headspace Screening Instrument: X PID FID	Well Installed: ☒ Yes ☐ No Well No.: MW-4

		 -						
Sample No.		pth (ft) Blow Comple (Care Description		Sample Depth (ft)		Blow		space g (ppm)
- Campio III	From	То	Rec (Count	Sample/Core Description	Total Organic	Total Methane	
	0	2			Gravel, no sample taken			
MW-4-0204	2	4		0000	No management			
11111-1-0204		4		3-2-2-2	No recovery.			
MW-4-0406	4	6	8	2-1-1-1	Fill, dark brown, rusty, silty clay loam, w/	0.3		
·	-				gravel, slag material, and glass.			
MW-4-0608	6	8	12	1-1-1-1	Fill, same as above.	0		
MW-4-0810	8	10	10	1-1-1-1	Fill, same as above, wet in lower 2 inches of	0		
	-	_			sample, black pumice -like material throughout.			
MW-4-1012	10	12	8	1-1-1-1	Fill, same as above, brick fragments, black	0		
					pumice-like material. Some silty wet clay in last			
					inch of sample.			
MW-4-1214	12	14	17	1-1-1-3	Clay, light brownish gray silty clay, w/ approx.	0		
	<u> </u>				10% 1/4" - 1/2" dia. gravel, some black coal-like			
					fragments and iron-stained fragments, probably			
					not native material.			
				_				

Notes			

Project No.	No. <u>60008.11</u>			
Boring No.		MW-4		
Page	2	_ of .	_3	

Sample No.	No. Sample Depth (ft) Some Count Sample/Core Description		Head: Reading	space g (ppm)			
Sample No.	From	То	Reco (i	Count	Sample/Core Description	Total Organic	Total Methane
MW-4-1416	14	16	12	1-2-3-5	Clay (14'-14.25'), light brown silty clay,	0	
					weathered, plastic.		
					Clay (14.25'-15'), light yellowish brown sandy		
					clay, w/ approx. 50% gravel (1/16"-1/4" dia.),	-	
					more sand w/ depth.		
MW-4-1618	16	18	2	3-13-20-23	Very little recovery, lots of cave-in from above,	0	-
					w/ one large 2" dia. limestone cobble protruding		
					from the shoe of the spoon.		
MW-4-1820	18	20	12	13-15-19-20	Sand & gravel, light yellowish brown coarse	0	
					sand w/ approx. 40% 1/16"-1" cobbles,		
					"natural gas" type odor, very poorly sorted.		
MW-4-2022	20	22	10	15-15-18-20	Sand & gravel, same as above, large 1 1/2" dia.	0	
					limestone cobbles in last 2", 1" band of yellow		
					sand in upper part of spoon.		
MW-4-2224	22	24	20	8-10-10-10	Clay (22'-22.5'), dark brown sandy clay w/ gravel	0	
					wet, approx. 20% 1/2" dia. gravel.		
					Sand & gravel (22.5'-23.75'), multi-colored,		
					coarse sand w/ 1/8"-1" gravel & cobbles, wet.		
MW-4-2426	24	26	6	15-16-18-18	Sand & gravel. limited recovery, same as above.	0	
MW-4-2628	26	28	17	8-9-10-10	Sand & gravel, coarse-grained, multi-colored	0	
					sand w/ 50% 1/4"-3/4" gravel, better sorted than		
-					above, saturated.		

		 _		 	.	 	
Mataa							
Notes							
	_				•	 -	
1							
			 _	 		 .	
1							

Project No.	60008.11			
Boring No.		MW-4		
Page	3_	_ of _	_3	

Sample No.	Sar Dept	Sample Depth (ft)		Comple/Core Description		Heads Reading	space g (ppm)
Sample No.	From	То	Recc (ii	Count	Sample/Core Description	Total Organic	Tota Metha
MW-4-2830	28	30	12	4-5-7-10	Sand & gravel, same as above, saturated, iron	0	
	ļ				staining in last inch of sample.		
MW-4-3032	30	32	12	5-7-12-12	Sand & gravel, same as above.	0	
MW-4-3234	32	34	2	6-9-13-16	Sand & gravel, same as above, poor recovery.	0	
					Sands are heaving. Discontinued		
					sampling, drilled to 38 ft and set well.		
····							
							-
							
	-						

1	N	O	t٤	3	S
		•	LL	•	•

			Ent'd by:	TPO
			 Ck'd by:	ЈМН
			 Date: 12	2-15-99

Project No.	60008.11				
Boring No.	MW-5				
Page					

^			
Genera	I In	torm	ation

Client: Ohio Environmental Protection Agency	Boring No.: MW-5			
Site Location: Dayton Electroplate, 1030 Valley Street	Date(s) Drilled: August 25, 1999			
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA			
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 42			
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 32 ft			
Headspace Screening Instrument: X PID FID	Well Installed: ☒ Yes ☐ No Well No.: MW-5			

Sample No.		Sample Depth (ft)		Blow	Comple/Comp Description	Headspace Reading (ppm	
Sample No.	From	То	Recovery (in)	Count	Sample/Core Description	Total Organic	Total Methan
	0	2			No sample, gravel parking lot.		
MW-5-0204	2	4	16	4-3-3-3	Fill (2'-2.25'), light brown / gray sand, fill &	0	
				1,000	gravel.		
					Brick (2.25'-2.5'), red brick fragments.		
					Fill (2.5'-3.25'), black sandy fill & gravel, looks		
MW-5-0406	4	6	16	4-1-1-1	Fill, black material like above, brick fragments,	0	
··	+				sand, & gravel, very mixed.		-
MW-5-0608	6	8	18	6-12-18-20	Fill (6'-6.5'), same as above.	0	
					Sand & gravel (6.5'-7.5'), light brown, dry, med.		
					grained sand, w/ approx. 30% 1/4"-1" dia.		
					cobbles, mostly limestone, native material.		
MW-5-0810	8	10	12	6-12-18-14	Sand & gravel, same as above.	0	
MW-5-1012	10	12	15	8-12-16-18	Sand & gravel, same as above.	0	_
MW-5-1214	12	14	12	8-12-14-7	Sand & gravel, same w/ one 2" limestone	0	
					cobble @ 12'.		

Notes

_	 	 	 	 	 	
1						
L	 	 	 		 	
_	 	 		 	 	
1						

Project No.	60008.11				
Boring No.	MW-5				
Page	2 of 3				

Sample No.		Sample Depth (ft)		Blow Count	Comple/Core Description	Headspace Reading (ppm)	
Sample No.	Sample/Core Description		Total Organic	Total Methane			
MW-5-1416	14	16	16	10-12-16-23	Sand & gravel, same as above, fairly strong	0	
					natural gas odor.		
						· - · · · · -	
MW-5-1618	16	18	18	15-15-15-18	Sand & gravel, changing over to a multicolored	0	
					sand w/ approx. 50% assorted cobbles, some		
	ļ				iron staining in lower 3" of sample, same odor.		
			ļ				
MW-5-1820	18	20	10	10-12-14-14	Sand & gravel, same as above.	0	
MW-5-2022	20	22	15	9-9-10-12	Sand & gravel, same as above.	0	
			<u> </u>				
MW-5-2224	22	24	16	10-18-20-22	Sand & gravel, same as above.	0	
			40	47.40.50/5			
MW-5-2426	24	26	18	1/-19-50/5	Sand & gravel, same as above, w/ larger	0	
			ļ		cobbles, 1"-1 1/2", throughout.		
MW-5-2628	26	28	10	10-10-20-22	Sand & gravel, same as above, smaller cobbles	0	
10144-3-2020	20	20	10	 	in last foot of sample, 1/4"-1/2" dia.	U	
MW-5-2830	28	30	15	16-20-22-23	Sand & gravel, same as above.	0	
0 2020				TO EO EE EO	<u> </u>		
MW-5-3032	30	32	10	20-20-50/5	Sand & gravel, same as above.	0	
MW-5-3234	32	34	18	9-16-18-20	Sand & gravel, abrupt contact with a coarse-	0	
					grained, saturated, multi-colored sand, w/		ı
					approx. 50% 1/16"-1" gravel and cobbles, very		
					poorly sorted.		

Notes			
			<u>. </u>

Project No.	60008.11				
Boring No.	MW-5				
Page	3	of .	3		

Julilliary of		9					
Sample No.	Sar Dep	Sample Depth (ft) From To E		Blow	Comple/Core Description	Headspace Reading (ppm)	
Sample No.	From	То	Rec	Count	Sample/Core Description	Total Organic	Total Methane
MW-5-2830	34	36	18	15-19-20-19	Sand & gravel, same as above, w/ small lenses	0	
					of just coarse-grained sand, 3" thick @ 34.25		
					and 35', saturated, large limestone cobbles in		
					last 2 inches.	0	
				19-23-23-24	Sand & gravel, poor recovery, sands heaving.	0	
					Sands are heaving, discontinued		
			-		sampling, drilled to 42 ft and set well.		
				·			
				-			
				_			
							-
-							
							-
						· · · · · · · · · · · · · · · · · · ·	

	_ 4 _	
N	ΔT_{c}	3 -
1 4		

	Ent'd by: TPO
- -	Ck'd by: JMH
	Date: 12-15-99

Project No.	60008.11
Boring No.	MW-6
Page	of3

General Information

Client: Ohio Environmental Protection Agency	Boring No.: MW-6		
Site Location: Dayton Electroplate, 1030 Valley Street	Date(s) Drilled: August 26, 1999		
PSARA Geologist: Tim O'Dowd	Drilling Method / Borehole Size: 4.25" I.D. HSA		
Drilling Contractor: Midwest Environmental Drilling	Total Depth of Borehole (ft): 42		
Sampling Device: 2" X 24" Split Spoon	Depth to Water (ft): 32 ft		
Headspace Screening Instrument: Z PID FID	Well Installed: ☒ Yes ☐ No Well No.: MW-6		

Sample No.	l r	Sample Depth (ft)		Recovery (in)	Blow	Comple/Core Description	Head Readin	space g (ppm)
	From	То	Hecc (i	Count	Sample/Core Description	Total Organic	Total Methane	
	0	2			No sample, grass and top soil.			
MW-6-0204	2	4	18	15-17-19-20	Topsoil (2'-2.25'), dark brown silty clay loam.	0		
					Sand & gravel (2.25'-3.5'), light brown, med		_	
					grained sand w/ approx. 30% gravel, large			
					limestone gravel @ 2.25'-2.5', strong "natural			
					gas" odor.			
MW-6-0406	4	6	18	18-17-20-23	Sand & gravel, same as above, w/ more gravel	0		
					approx. 50% 1/8"-1" dia. gravel, slight odor.			
MW-6-0608	6	8	15	17-19-23-24	Sand & gravel, same as above, stronger odor.	0		
MW-6-0810	8	10	6	13-19-16-20	Sand & gravel, same as above, same odor as	0		
					above.			
MW-6-1012	10	12	6	13-16-17-17	Sand & gravel, same as above.	0	_	
MW-6-1214	12	14	16	15-16-17-30	Sand & gravel, same as above.	0		
MW-6-1416	14	16	14	30-17-19-20	Sand & gravel, same as above.	0		
MW-6-1618	16	18	16	17-14-10-10	Sand & gravel, same as above, strong	0		
					"natural gas" odor.			

Notes	 	 			
	 			-	

Project No.	60008.11			
Boring No.		MW-6		
Page	2	_ of _	3	

Juninary Or							
Sample No.	Sample Depth (ft)		Recovery (in)	Blow	Sample/Core Description	Head: Reading	
cample 140.	From	То	Rec	Count	Sample/Core Description	Total Organic	Total Methane
MW-6-1820	18	20	16	10-12-16-23	Sand & gravel, same as above, w/ approx. 40%	0	
			}		1/4"-3/4" gravel fragments, same odor.		
MW-6-2022	20	22	15	10-10-12-16	Sand & gravel, same as above, with slightly	0	
					larger gravel (1" dia.) throughout, some iron		
					staining in lower 3" of sample.		
			L				
MW-6-2224	22	24	15_	17-19-19-20	Sand & gravel, (22'-22.5') same as above.	0	
			ļ		Sand (22.5'-23'), medgrained with		<u></u>
					multi-colored, well sorted sand.		
					Sand w/ gravel, same sand w/ approx. 25%		
					1/16"-1/4" gravel, band of yellow and red iron		
					staining at contact w/ above.		
MW-6-2426	24	26	12	11-12-14-17	Sand & gravel, moist, multi-colored sand, w/	0	
			ļ		1/16"- 11/2" dia. gravel & cobbles, poorly sorted.		
MW-6-2628	26	28	18	17-50/5	Sand, moist, multi-colored sand, w/ approx.	0	
					25% 1/8"-3/4" gravel, bands of iron staining @		_
					27', 2" thick, slight odor.	0	
					Cond company to the condition of the con		
MW-6-2830	28	30	10	12-18-50/5	Sand, same as above, moist.	0	
				40.45.00.00	Sand & gravel (30'-30.5'), same sand w/ approx.		<u> </u>
MW-6-3032	30	32	12	40-45-20-28	50% 1/4"-1" gravel.	0	
					Sand (30.5'-31'), multi-colored, med-grained,		
			L		sand, w/ approx. 20% 1/4"-3/4" dia. gravel in		
					last inch of sample, wet.		
					and mon or sumple, wet.		
			_				

			<u>-</u>	 	
Notes					
	·	•			

Project No.	60	008.1	1
Boring No.		MW-6	
Page	3	_ of _	3

Sample No.	Sar Dep	Sample Depth (ft)		Sample Depth (ft)		Blow	Comple/Core Description	Head: Readin	space g (ppm)
	From	То	Recovery (in)	Count	Sample/Core Description	Total Organic	Total Methan		
MW-6-3234	32_	34	18	12-18-18-20	Sand w/ gravel, same as above, saturated.	0			
MW-6-3436	34	36	24	9-9-14-15	Sand & gravel (34'-35'), same as above,	0			
	_				saturated.				
					Sand (35'-36'), multi-colored, wet,				
					medgrained sand, less than 5% gravel,				
					saturated.				
					Sands are heaving. Discontinued				
					sampling, drilled to 42 ft and set well.				
 									
		_							
			·						
				-					
						 			
			_						
	-								
	 								
				-	<u> </u>				
						+ +			
				_					

ľ	U	^	t	0	c

	Ent'd by: TPC)
	Ck'd by: JMF	
	Date: 12-15-9	

Project No. ____60008.11 Well No.

MW-1

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-1	
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/23/99	
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger	
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 30.12 ft	

Well No. MW-2

Project No. <u>60008.11</u>

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-2	
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/24/99	
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger	
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 31.63 ft	

Well No. MW-3

Project No. 60008.11

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-3	
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/24/99	
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger	
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 35.19 ft	

Project No. ____60008.11 Well No.

MW-4

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-4
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/25/99
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 30.23 ft

Well No.

Project No. 60008.11 MW-5

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-5	
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/25/99	
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger	
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 33.48 ft	

Well No.

Project No. ____60008.11 MW-6

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-6
Site Location: Dayton Electroplate, 1030 Valley Street	Date Completed: 8/26/99
PSARA Geologist: Tim O'Dowd	Drilling Method: Hollow Stem Auger
Drilling Contractor: Midwest Environmental	Depth to Static Water (ft): 33.31 ft

NOU-30-1999 Ø7:18 CUSTOM ANALYTICAL 513 671 5240 P. 02/07
TYPE OR USE PEN
SELF TRANSCRIBING 1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739
PRESS HARD Permit Number NIM

COUNTY MONIGOMERY	TOWNSHIP	SECTION 20T No. 35
OWNER/BUILDER DAYTON EleCTra		PROPERTY ADDRESS 1030 Valley ST Deyton 0
_		(ADDRÉSS OF WELL LOCATION A)
LOCATION OF PROPERTY	CONSTRI	CTION DETAILS MW-1
CASING Borehole Diameter	<u>Z</u>	GROUT
T. Diameter 2 n. Length 36.64ft.		in. Material Bentante Volume used 8 5043 50
2 Diameter in. Length ft.		In. Method of installation 45H
Type: $\frac{1}{2}$ Steel $\frac{1}{2}$ Galv. $\frac{1}{2}$ PVC	(1) (2) Other	Depth: placed from
Joints: Threaded Welded T Solvent	☑ Other	Material # 5 Son of Volume used 12 5043 50 Method of installation #3/1
Liner: LengthType		in. Depth: placed from 36 ft. to 24
SCREEN		Pitless Device GAdapter GPreassembled unit
Type (wire wrapped, louvered, etc.) Slated	_ Material _ Pvc	Use of Well_ MAN Man ha/E CANEY
Lengthft. Diameter_		in. □ Rotary □ Cable _ 12:Augered 및 Driven □ Dug □ Other
Set between 26. ft. and 36.	ft. Slot_Q+0/0_	Date of Completion_ 2-23-99
WELL LOG*		WELL TEST
NDICATE DEPTH(S) AT WHICH WATER IS ENCOU	JNTERED.	☐ Bailing ☐ Pumping ☐ ☐ Other ☐
Show color, texture, hardness, and formation: sandstone, shale, limestone, gravel, clay, sand, e	etc. From To	Test rate gpm
Sand + Fravel, Brown	0_36.9	7 Measured from: 1.3 top of casing Triground level Other
		Static Level (depth to water) ft. Date:
		Quality (clear, cloudy, taste, odor)
MW-L		*(Attach a copy of the pumping test record, per section 1521.05, ORC)
	İ	PUMP
		Type of pump
	 	Pump set at
		Pump installed by
		SKETCH SHOWING WELL LOCATION
		Show distances well lies from numbered state highways.
		street intersections, county roads, etc.
		N
 -		
	' 1	Please see ATTachmenT
		- prease see Allacament
	<u>.</u>	
	1	
		-{ W
		-
	· · · · · · · · · · · · · · · · · · ·	
	1 4	
• • • • • • • • • • • • • • • • • • • •		-
additional space is needed to complete well log, use next of	Onceduturally numbered to	S S
_	orgoderack untimeten intu-	hereby certify the information given is accurate and correct to the best of my knowledge
lling Firm		. Signed
cross 11405 SCATULY CL		3-12-49
irres 11 17 11 1 C. Fall 11 PV F.	/ #	Date W T J S 1 I I
		Date. 8-43-11

Pérmit Number_

TYPE OR USE PEN SELF TRANSCRIBING PRESS HARD Ohio Department of Natural Resources, Divison of Water 1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

SECTIONALOT No. TOWNSHIP COUNTY MONTGOMERY OWNER/BUILDER DOYTON Electroplate _____ PROPERTY ADDRESS /0.30 LOCATION OF PROPERTY_Same **CONSTRUCTION DETAILS** Porehole Diameter_ .Z.. CASING Length A. 9 ft. Volume used 7 5065. 600 Wall Thickness & 40 in. Material Bentonile Diameter,_ Wall Thickness_____in. Method of installation_ H3h 2. Diameter. _ ft. Length. Depth: placed from 26 ⊡ ②Galv. I Steel Туре: GRAVEL PACK (Filter Pack) 2 Other ____ Volume used 10-50 44 600 Material エムろ Welded 2 Joints: 2 Other Method of installation_ Wall Thickness Sch_4/D.in. Depth: placed from 34 Liner: **SCREEN** Preassembled unit Pitless Device Type (wire wrapped, louvered, etc.) 5/10 dec Material PVC Use of Well______ Diameter_ _in. F Rotary _Cable Maugered L Driven Fi Dug Date of Completion 8-24-99 ft. and. Sol 0 010 Set between L LOG' WEL INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED. ... Bailing Pumping* □ Other Show color, texture, hardness, and formation: Test rate_ gpm Duration of test, sandstone, shale, limestone, gravel, clay, sand, etc. From To Drawdown Measured from: lop of casing around level Sond of Grave / Brown Static Level (depth to water)_ __ ft. Date:. mw-a Quality (clear, cloudy, taste, odor) _ *(Attach a copy of the pumping test record, per section 1521.05, ORC) PUMP Capacity. Type of pump. Pump set at. Pump installed by, SKETCH SHOWING WELL LOCATION Show distances well lies from numbered state highways, street intersections, county roads, etc. see ATTachmen Ε 'if additional space is needed to complete well log, use next consecutively numbered form heraby certify the information given is accurate and correct to the best of my knowledge. Drilling Firm 1951 Century Circle ODH Registration Number oletion of this form is required by section 1521.05. Ohio Revised Code - file within 30 days after completion of drilling ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224

1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739 PRESS HARD Permit Number COUNTY MONTGOMERY TOWNSHIP 2 SECTIONLOT No. -ICIRCLE ONE) _____ PROPERTY ADDRESS /0.30 LOCATION OF PROPERTY. CONSTRUCTION DETAILS Borehole Diameter_ CASING Volume used 1/ 50 Lb bac Diameter_ Wall Thickness Sch 40 in. Material Benton ITC Wall Thickness_____in, Method of Installation__________in. 🗵 Diameter \equiv Depth: placed from. _. Steel Galv. Type: .Z. Other_ Volume used. 250/3 Material # 5 Sand Welded = Joints: Method of installation__ #5# **Z** Other Length in. Depth: placed from Liner: **SCREEN** Pitiess Device □ Adapter Preassembled unit Type (wire wrapped, louvered, etc.) Stated. Material Puc____ Menhall COVEV Use of Well 1991 Dlameter_2" LiAugered [] Driven . 🗆 Dug ___in. 🗀 Rotary i iCable 24-99 Slot_0.010 Date of Completion _ L LOG WELL TEST NDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED. Bailing Pumping* Show color, texture, hardness, and formation: gpm Duration of test sandstone, shale, limestone, gravel, clay, sand, etc. From Drawdown_ around level Measured from:

top of casing Sand+ Fravel Brown Static Level (depth to water) ______ ft. Date: ____ mw-3 Quality (clear, cloudy, taste, odor) ____ *(Attach a copy of the pumping test record, per section 1521.05, ORC) **PUMP** Type of pump_ Pump set aL Pump installed by SKETCH SHOWING WELL LOCATION Show distances well lies from numbered state highways. street intersections, county roads, etc. See ATTachmen T "If additional space is needed to complete well log, use next consecutively numbered form. I hereby certify the information given is accurate and correctly the best of my knowledge. Orilling Firm 11817 Address 11405 CRATURY CIRCLE

TYPE OR USE PEN SELF TRANSCRIBING

Ohio Department of Natural Hesources, Divison of Water 1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739

PRESS HARD Permit Number TOWNSHIP 2 SECTION/LOT No. COUNTY MONTGOMERY OWNER/BUILDER DONTON CIRCLE ONE OR BOTH) Electroplating _ PROPERTY ADDRESS_/030_ LOCATION OF PROPERTY____ **CONSTRUCTION DETAILS** GROUT Borehole Diameter__ CASING in. Length 27 II. Wall Thickness Sch. 40in. Material Bentlemut □ Diameter __Volume used_ Wall Thickness in. Method of installation <u>H.5H</u> 2 Diameter 26 Depth: placed from ft. to Туре: Steel GRAVEL PACK (Filter Pack) Material # 5. San L Welded T Solvent Joints: 21 Other ... _ Method of installation_ Wall Thickness_ in. Depth: placed from Liner: SCREEN Pitless Device Preassembled unit Type (wire wrapped, louvered, etc.) Sloled __ Material PVC__ MARKALZ LAKER Length_ Diameter _.in. □ Rotary I 'Cable .₿Augered □ Driven □ Dug □ Other_ 8-25-99 Slot_0.010 Set between and Date of Completion WELL WELL TEST INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED. □ Bailing Pumping* Show color, texture, hardness, and formation: Test rate gpm Duration of test sandstone, shale, limestone, gravel, clay, sand, etc. To Drawdown 0 Measured from:
top of casing __ ground level Frave Static Level (depth to water)___ ____ ft. Date: _. mw - 4 Quality (clear, cloudy, taste, odor) ___ *(Attach a copy of the pumping test record, per section 1521.05, ORC) PUMP Capacity_ Type of pump ___ Pump set at_ Pump installed by SKETCH SHOWING WELL LOCATION Show distances well lies from numbered state highways, street Intersections, county roads, etc. See ATTachmenT W Ε "If additional space is needed to complete well log, use next consecutively numbered form I nereby certify the information given is accurate and correct to the best of my knowledge. 1/405 CERTURY GIRCLE City. State, Zip Inches ODH Registration Number 1919 Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling.

ORIGINAL COPY TO - ODNR, DIVISION OF WATER, 1939 FOUNTAIN SQ. DRIVE, COLS., OHIO 43224

TYPE OR USE PEN SELF TRANSCRIBING

Ohio Department of Natural Hesources, Divison of water

1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739 PRESS HARD Permit Number_ COUNTY Montgomery TOWNSHIP 2 SECTIONALOT No. OWNER/BUILDER DONTON ELECTroplang PROPERTY ADDRESS 1030 Valley (ADDRESS OF LOCATION OF PROPERTY CONSTRUCTION DETAILS Borehole Diameter_ CASING Wall Thickness Sch 40 in. Material. BenTon IV n. Length ala ti. □ Diameter_ Wall Thickness______ in. Method of installation #3/12 in. Length ft. to. 30 Depth: placed from Galv. Type: 2 Other GRAVEL PACK (Filter Pack) Sand Volume used 6-50 Lb Material # Welded Solvent 111 Joints: Method of installation_ Liner: Length Wall Thickness ._____in. Depth: placed from SCREEN Pitless Device Adapter ☐ Preassembled unit PVC Use of Well MW Maxhale COVIEK Type (wire wrapped, louvered, etc.) _______ Material Diameter 211 ✓Augered □ Driven □ Dug □ Other_ __in. 🗀 Rotary I_iCable 8-25-99 0.010 Date of Completion _ Siot WELL TEST WELL LOG' INDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED. i : Pumping* COther_ Bailing Show color, texture, hardness, and formation: Test rate_ gpm Duration of test _ hrs sandstone, shale, limestone, gravel, clay, sand, etc. Drawdown Measured from: () top of casing i. ground level Sand & Gravel, Brown. Static Level (depth to water) _ . ft. Date: _ ..__ mw-5 Quality (clear, cloudy, taste, odor)_ *(Attach a copy of the pumping test record, per section 1521.05, ORC) PUMP Type of pump _ Pump set at Pump installed by SKETCH SHOWING WELL LOCATION Show distances well lies from numbered state highways, street intersections, county roads, etc. See HTTachmen T W "If additional apace is needed to complete well log, use next consecutively numbered form. I hereby certify the information given is accurate and correct to the best of my knowledge. Oralling Firm MEN City, State, Zip CINCINNAT, ODH Registration Number

	
NOV-30-1999 27:20 CUSTOM ANALYTICA	3L 513 671 5240 P.07/07
TYPE OR USE PEN UNIO DEPARTIENT OF INATURE	al nesources, Divisor of Halo
	nbus, Ohio 43224 Phone (614) 265-6739 Permit Number
PRESS HARD	remit Number
	7
COUNTY MONTGOMERY TOWNSHIP	SECTION OT No. 3.5
	
OWNERD WOLD DOUGHT CLACTER TO	PROPERTY ADDRESS 1030 Volley ST DONTON SH
OWNER/BUILDER DOYTON ELECTRIPLATE	(ADDRESS OF WELL LOCATION A)
LOCATION OF PROPERTY Same	
CONSTRUC	TION DETAILS
CASING Borehole Diameter X in.	GROUT .
CASING Borehole Diameter III.	Material Benjon IV Volume used 9-5045 649 5
	Waterial Little Professional Little Profess
2 Diameter in. Length ft. Wall Thickness in	Method of installation 454
J. J. J. J. I	Depth: placed fromft. tof
Type: 3 Steel 3 Galv. 2 PVC 2 Other	. GRAVEL PACK (Filter Pack)
	Malerial #5 Sond Volume used 7 50 65 549
	Method of installation #3/1
Liner: LengthTypeWall Thickness 3ch 40 in	. Depth. placed from 30 ft. to 3
SCREEN	Pitless Device Adapter Preassembled unit
Type (wire wrapped, louvered, etc.) State of Material Pull	Use of Well_MU/Mankale CONERS
/ A	
30 1/2	Date of Completion 8-26-99
Set between 32 ft. and 4. 4 ft. Slot O:00	
WELL LOG'	WELL TEST
'NDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.	☐ Bailing ☐ Pumping* ☐ Other
Show color, texture, hardness, and formation:	Test rate gpm Duration of test nrs
sandstone, snale, limestone, gravel, clay, sand, etc. From 1 To	Drawdownf
	" " " " " " " " " " " " " " " " " " "
Sand + Gravel, Brown. 0 42	
	Static Level (depth to water) ft. Date:
mw#6	Quality (clear, cloudy, taste, odor)
· · · · · · · · · · · · · · · · · · ·	*(Attach a copy of the pumping test record, per section 1521.05, ORC)
	PUMP
· · · · · · · · · · · · · · · · · · ·	
	Type of pumpgpr
	Pump set atft
	Pump installed by
:	SKETCH SHOWING WELL LOCATION
	Show distances well lies from numbered state highways,
	street intersections, county roads, etc.
	N N
, '*, '*, '*, '*, '*	1
	See MTachmen T
	JEE MILLIAMENT
	1
	W
	W
	W
	W
	W
	W
	W
	W
	W
	S
2.7 additional space is needed to complete well log, use next consecutively numbered form.	

11405 CENTURY CIRCLY Date_ City, State, Zip Cincinnation of this form is required by section 1521.05. Ohio Revised Code - file within 30 days after completion of drilling.

TOTAL P. 07

Project No. _ Well No. _

60008.11 MW-1

Gen	erai	l Ir	nfo	rma	ation	ì
uu	u				461011	ı

Client: Ohio Environmental Protection Agency	Well No.: MW-1	
Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/27/99 Time: 1037 to 10	047
PSARA Technician(s): Tim O'Dowd	Weather: 70's Overcast	

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 29.66	Height of Water Column (ft): H = (D2 - D1) = 7.43
Depth to Well Bottom (ft): D2 = 37.09	Volume of Water in Well (gal): V = (H x F) = 1.21
Product Present: ☐ Yes ☒ No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	рН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	6.87	1,130	20.5	Very turbid light brown, no odor
Volume No. 1	6.79	877	18.3	Very turbid light brown, no odor
Volume No. 2	6.74	1,090	16.8	Turbid light brown, no odor
Volume No. 3	6.71	1,090	16.7	Turbid light brown, no odor
Volume No. 4	6.67	990	17.1	Slightly turbid light brown, no odor
Volume No. 5	6.69	996	17.0	Slightly turbid light brown, no odor
Total Volume Purged (gal): 8.0 Well Purged Dry: Yes X No				

Notes

well could not be surged, slightly bent, drill rods	s would not fit.
	Ent'd by: TPC
	Ck'd by:
	Date: 4-23-99

Project No. _ Well No. _

60008.11 MW-2

^		
(janarai	i int/	ormation
uciiciai		Ji illialiott

Client: Ohio Environmental Protection Agency	Weil No.: MW-2				
Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/27/99	Time:	1000	to	1017
PSARA Technician(s): Tim O'Dowd	Weather: 70's Sunny				

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 30.69	Height of Water Column (ft): H = (D2 - D1) = 8.44
Depth to Well Bottom (ft): D2 = 39.13	Volume of Water in Well (gal): V = (H x F) = 1.38
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	рH	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	6.88	1,040	20.1	Turbid light brown, no odor
Volume No. 1	6.95	968	17.2	Turbid light brown, no odor
Volume No. 2	6.94	936	17.3	Turbid light brown, no odor
Volume No. 3	6.91	1,050	16.7	Slightly turbid light brown, no odor
Volume No. 4	6.93	1,050	16.5	Slightly turbid light brown, no odor
Volume No. 5	6.94	1,060	16.5	Mostly clear, no odor
Total Volume Purged (gal): 8.0 Well Purged Dry: Yes X No			rged Dry: Yes 🗓 No	

N	0	to	•

Ent'd by: TPO
Ck'd by:
 Date: 4-23-99

Project No. <u>60008.11</u> Well No.

MW-3

General Information

Client: Ohio Environmental Protection Agency	Well No.: MW-3	Well No.: MW-3				
Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/27/99	Time:	0755	to	0822	
PSARA Technician(s): Tim O'Dowd	Weather: 70's Overcast					

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 35.19	Height of Water Column (ft): H = (D2 - D1) = 9.88
Depth to Well Bottom (ft): D2 = 45.07	Volume of Water in Well (gal): V = (H x F) = 1.61
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	pН	Conductivity (μπho)	Temperature (°C)	Appearance / Odor
First Bailer	6.71	1,280	17.4	Very Turbid light brown, no odor
Volume No. 1	6.67	1,060	16.7	Very Turbid light brown, no odor
Volume No. 2	6.59	1,250	16.5	Very Turbid light brown, no odor
Volume No. 3	6.52	1,120	16.1	Very Turbid light brown, no odor
Volume No. 4	6.50	1,230	15.8	Very Turbid light brown, no odor
Volume No. 5	6.49	1,210	15.9	Very Turbid light brown, no odor
Total Volume Purged (gal): 9.0		Well Pu	rged Dry: 🔲 Yes 🕱 No	

Notes

<u> </u>	
	Ent'd by: TPO
	Ck'd by:
	Date: 4-23-99

Project No. <u>60008.11</u> Well No.

MW-4

\sim			. 1	1	£ _ ~		-4: -	
u	en	era	!!	lni	ror	m	atio	วท

Client: Ohio Environmental Protection Agency	Well No.: MW-4
Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/27/99 Time: 0835 to 0906
PSARA Technician(s): Tim O'Dowd	Weather: 70's Overcast

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 27.77	Height of Water Column (ft): H = (D2 - D1) = 9.86
Depth to Well Bottom (ft): D2 = 37.63	Volume of Water in Well (gal): V = (H x F) = 1.61
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	рН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor	
First Bailer	6.79	1,030	17.4	Turbid light brown, no odor	
Volume No. 1	6.94	826	16.7	Slightly Turbid light brown, no odor	
Volume No. 2	6.85	865	16.5	Slightly Turbid light brown, no odor	
Volume No. 3	6.80	871	16.1	Clear, no odor	
Volume No. 4	6.84	884	15.8	Clear, no odor	
Volume No. 5	6.84	894	15.9	Clear, no odor	
Total Volume Pur	Total Volume Purged (gal): 9.0 Well Purged Dry: Yes X No				

N	Ol	te	S
---	----	----	---

 	
 	
	 Ent'd by: TPO
 	 Ck'd by:
 	 Date: 4-23-99

Project No. <u>60008.11</u> Well No. <u>MW-5</u>

_			
(jer	erai	Intor	mation

	Client: Ohio Environmental Protection Agency	Well No.: MW-5
ĺ	Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/27/99 Time: 0926 to 0941
	PSARA Technician(s): Tim O'Dowd	Weather: 70's Overcast

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 30.84	Height of Water Column (ft): H = (D2 - D1) = 10.89
Depth to Well Bottom (ft): D2 = 41.73	Volume of Water in Well (gal): V = (H x F) = 1.76
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	pН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	6.82	980	18.4	Very turbid light brown, no odor
Volume No. 1	6.76	897	16.3	Very turbid light brown, no odor
Volume No. 2	6.77	914	15.9	Very turbid light brown, no odor
Volume No. 3	6.74	886	15.8	Slightly Turbid light brown, no odor
Volume No. 4	6.71	885	16.0	Slightly Turbid light brown, no odor
Volume No. 5	6.69	866	15.9	Clear, no odor
Total Volume Pui	ged (gal): 10.	0	Well Pu	rged Dry: 🗌 Yes 🗶 No

Notes

No.
Ent'd by: TPO
Ck'd by:
Date: 4-23-99

Project No. <u>60008.11</u> Well No.

MW-6

\sim							_4:	
G	en	era	1 1	nı	O	rm	au	on

Client: Ohio Environmental Protection Agency	Well No.: MW-6				
Site Location: Dayton Electroplate, 1030 Valley St.	Date Developed: 8/26/99	Time:	1700	to	1720
PSARA Technician(s): Tim O'Dowd	Weather: 80's Sunny				

Well Volume Calculations

Measuring Point: X Top of Casing Other:	Measurement Instr.: ☐ Tape ☐ Electronic 🕱 O/W Probe
Depth to Water (ft): D1 = 33.31	Height of Water Column (ft): H = (D2 - D1) = 11.77
Depth to Well Bottom (ft): D2 = 45.08	Volume of Water in Well (gal): V = (H x F) = 1.92
Product Present: Yes X No	Depth to Product (ft): NA Product Thickness (in): NA

2" well: F = 0.163

4" well: F = 0.651

Well Development Data

Well Volume	pН	Conductivity (µmho)	Temperature (°C)	Appearance / Odor
First Bailer	6.94	1,610	21.3	Very turbid light brown, no odor
Volume No. 1	6.88	1,670	17.3	Very turbid light brown, no odor
Volume No. 2	6.83	1,670	17.7	Very turbid light brown, no odor
Volume No. 3	6.81	1,730	16.7	Very turbid light brown, no odor
Volume No. 4	6.76	1,600	16.8	Very turbid light brown, no odor
Volume No. 5	6.72	1,740	16.8	Very turbid light brown, no odor
Total Volume Pur	ged (gal): 10.	0	Well Pu	rged Dry: 🗌 Yes 🕱 No

٨	1	١+	۵	c

i				
<u> </u>	-			
				_
		·		
				_
				
<u> </u>				
			· ·	
			Carl disco	TDO
			Ent'd by:	170
ł			Ck'd by:	
			Ck u by.	
			Date: 4-	23-99

MONITORING WELL LOCATIONS

WELL #	NORTHING	EASTING	ELEV' N
MW1	652420.95	1501037.36	656.46
MW2 MW3	652236.04 651968.07	1501068.68 1501010.69	657.38 658.48
MW4 MW5	652084.53 652174.96	1501062.56 1501142.64	654.44 657.50
MW6	652143.69	1500937.27	660.21

The horizontal coordinates were established by GPS observations and are referenced to NAD 83.

The elevations given are the orthometric height as determined by GPS observations and are referenced to NAVD 88.

NGS Monuments used in this survey:

PID - AE3350

& PID - AH3427

The tie from NGS monument AE3350 to MW1 is

N 58°27′47″ E 7982.28′

Note: This seal applies only to this document. disali-any responsibility for all d sataim other documents or instruments relating to or intended to be used for any part or parts of this project or any other project.

MONITORING WELLS

For PSARA Technologies, Inc. Dayton Electroplating Site Dayton, Montgomery County, Ohio

Drawn: GES Checked: BLP Date: 9/29/99 N/A Scale: Job No.: 3031

B. L. Payne & Associates, Inc.
Civil Engineers & Surveyors

11479 Colernin Avenue

Cincinnetic Ohio 45252

Fax: (513)385- 8103

Rev. 12/8/99 - MW3 Elev. Phone: (513) 385-5922

Quanterra Incorporated 4101 Shuffel Drive, NW North Canton, Ohio 44720

330 497-9396 Telephone 330 497-0772 Fax

ANALYTICAL REPORT

PROJECT NO. 60008.11

ORPA-SWDO MOB ORDER 557-09

Lot #: A9I020127

Rich Stuck

PSARA Technologies

QUANTERRA INCORPORATED

Jeffrey C. Smith Project Manager

October 1, 1999

CASE NARRATIVE

The following report contains the analytical results for four solid samples submitted to Quanterra-North Canton by PSARA Technologies from the OEPA-SWDO MOB Order 557-09 Site, project number 60008.11. The samples were received September 2, 1999, according to documented sample acceptance procedures.

Samples submitted for reactive cyanide and reactive sulfide analysis were received after the recommended holding times had been exceeded.

Quanterra-North Canton utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the method reference page in accordance with the methods indicated.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The coolers were received at the laboratory at a temperature of 0.2° C.

GC/MS SEMIVOLATILES

The MS/MSDs performed on samples 8.11-001 MW-2 and 8.11-004 MW-6 had RPDs and/or recoveries outside acceptance limits. However, since the associated method blank and check were in control, no corrective action was necessary.

The MS/MSD performed on sample 8.11-003 MW-4&MW-5 had recoveries outside acceptance limits. Since the RPDs were in control, no corrective action was necessary.

Sample 8.11-003 MW-4&MW-5 had surrogate recoveries outside acceptance limits. Upon reextraction and reanalysis, the surrogates were again outside acceptance limits demonstrating a matrix effect.

ANALYTICAL METHODS SUMMARY

A91020127

PARAMETER	ANALYTICAL METHOD		
Chlorinated Herbicides by GC	SW846	8151A	
Inductively Coupled Plasma (ICP) Metals	SW846	6010B	
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846	7470A	
Organochlorine Pesticides	SW846	8081A	
Pensky-Martens Method for Determining Ignitability	SW846	1010	
Reactive Cyanide	SW846	7.3.3	
Reactive Sulfide	SW846	7.3.4	
Semivolatile Organic Compounds by GC/MS	SW846	8270C	
Soil and Waste pH	SW846	9045C	
Volatile Organics by GC/MS	SW846	8260B	

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A9I020127

WO #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
4				
D2252	001	8.11-001 MW-2	08/23/99	14:00
D2256	002	8.11-002 MW-3	08/24/99	11:00
D2257	003	8.11-003 MW-4&MW-5	08/25/99	17:00
D 225A	004	8.11-004 MW-6	08/26/99	16:00

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.
 - All calculations are performed before rounding to avoid round-off errors in calculated results.
 - Results noted as "ND" were not detected at or above the stated limit.
- _ This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corresivity, density, flashpoint, ignitability, layers, odor, paint lilter test, pH, perosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: 8.11-001 MW-2

TCLP GC/MS Volatiles

	Lot-Sample #:	A9I020127-001	Work Order #:	D2252101	Matrix:	SOLID
•	Date Sampled:	08/23/99 14:00	Date Received:	09/02/99		
	Leach Date:	09/03/99	<pre>Prep Date:</pre>	09/10/99	Analysis Date:	09/10/99

Leach Batch #..: P924508 Prep Batch #...: 9250138

Dilution Factor: 1

% Moisture....: Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	0.025	mg/L
Carbon tetrachloride	ND	0.025	mg/L
Chlorobenzene	ND	0.025	mg/L
Chloroform	ND	0.025	mg/L
1,2-Dichloroethane	ND	0.025	mg/L
1,1 Dichloroethylene	ND	0.070	mg/L
Methyl ethyl ketone	ND	20	mg/L
Tetrachloroethylene	ND	0.070	mg/L
Trichloroethylene	ND	0.050	mg/L
Vinyl chloride	ND	0.050	mg/L
	PERCENT	RECOVERY	
■ SURROGATE	RECOVERY	LIMITS	_
1,2-Dichloroethane-d4	98	(75 - 117)	-
Toluene d8	94	(86 - 122)	
Bromofluorobenzene	91	(60 - 137)	
Dibromofluoromethane	96	(70 - 135)	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-001 MW-2

TCLP GC/MS Semivolatiles

Lot-Sample #:	A9I020127-001	Work Order #:	D2252102	Matrix:	SOLID
Date Sampled:	08/23/99 14:00	Date Received:	09/02/99		
Leach Date:	09/04/99	Prep Date:	09/08/99	Analysis Date:	09/13/99
Touch Batch # .	D024701	Donas Datel #	0250215		

Leach Batch #..: P924701 Prep Batch #...: 9250215

Dilution Factor: 1

% Moisture:	mechod	: SW846 82	2700
		REPORTIN	īG
PARAMETER	RESULT_	LIMIT	UNITS
o-Cresol	ND	0.050	mg/L
m-Cresol & p-Cresol	ND	0.10	mg/L
1,4-Dichlorobenzene	ND	0.050	mg/L
2,4-Dinitrotoluene	ND	0.050	mg/L
Hexachlorobenzene	ND	0.050	mg/L
Hexachlorobutadiene	ND	0.050	mg/L
Hexachloroethane	ND	0.050	mg/L
Nitrobenzene	ND	0.050	mg/L
Pentachlorophenol	ND	0.10	mg/L
Pyridine	ND	0.10	mg/L
2,4,5-Trichlorophenol	ND	0.050	mg/L
2,4,6-Trichlorophenol	ND	0.050	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	84	(44 - 11	0)
2-Fluorobiphenyl	84	(50 - 10	5)
Terphenyl-d14	124	(11 - 15	8)
Phenol-d5	51	(10 - 13	1)
2-Fluorophenol	30	(10 - 13	0)
2,4,6-Tribromophenol	84	(10 - 15	6)

NOTE(S):

Client Sample ID: 8.11-001 MW-2

TCLP GC Semivolatiles

	Lot-Sample #:	A9I020127-001	Work Order #:	D2252103	Matrix:	SOLID
-	Date Sampled:	08/23/99 14:00	Date Received:	09/02/99		
	Leach Date:	09/04/99	Prep Date:	09/08/99	Analysis Date:	09/11/99
	Leach Batch #:	P924701	Prep Batch #:	9250211		
	Dilution Factor:	1				
	% Moisture:		Method:	SW846 8081A		

•		REPORTING
PARAMETER	RESULT	LIMIT UNITS
Chlordane (technical)	ND	0.0050 mg/L
Endrin	ND	0.00050 mg/L
• Heptachlor	ND	0.00050 mg/L
Heptachlor epoxide	ND	0.00050 mg/L
Lindane	ND	0.00050 mg/L
■ Methoxychlor	ND	0.0010 mg/L
Toxaphene	ND	0.020 mg/L
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Decachlorobiphenyl	85	(60 - 150)
Tetrachloro-m-xylene	82	(14 - 155)

NOTE(S):

Client Sample ID: 8.11-001 MW-2

TCLP GC Semivolatiles

	Lot-Sample #: A	.91020127-001	Work Order #	: D2252104	Matrix	.: SOLID
	Date Sampled: 0	8/23/99 14:00	Date Received	: 09/02/99		
	Leach Date: 0:	9/04/99	Prep Date	: 09/10/99	Analysis Date.	.: 09/17/99
	Leach Batch # P	924701	Prep Batch #	: 9252314		
	Dilution Factor: 1					
	* Moisture:		Method	: SW846 8151	LA	
_				REPORTING		
_	PARAMETER		RESULT	LIMIT	UNITS	
	2,4-D		ND	0.50	mg/L	
-	2,4,5-TP (Silvex)		ND	0.10	mg/L	
			PERCENT	RECOVERY		
	SURROGATE		RECOVERY	LIMITS		
-	2,4-Dichlorophenyla	acetic acid	73	(53 - 168)	-	

NOTE(S):

Client Sample ID: 8.11-001 MW-2

TCLP Metals

Lot-Sample #...: A9I020127-001 Matrix....: SOLID

 Date Sampled...:
 08/23/99
 14:00
 Date Received...:
 09/02/99

 ■ Leach Date....:
 09/04/99
 Leach Batch #...:
 P924701

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Arsenic	: 9251209 ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D2252105
Barium -	ND	10.0 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D2252106
Cadmium	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D2252107
Chromium	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D2252108
Lead	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D2252109
Selenium	ND	0.25 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D225210A
■ Silver	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/09-09/15/99	D225210C
■ Mercury	ND	0.0020 Dilution Factor: 1	mg/L	SW846 7470A	09/09-09/10/99	D225210D
MOTE(S):						

Client Sample ID: 8.11-001 MW-2

General Chemistry

Lot-Sample #...: A9I020127-001 Work Order #...: D2252 Matrix.....: SOLID

■ Date Sampled...: 08/23/99 14:00 Date Received..: 09/02/99

* Moisture....:

-	PARAMETER	RESU	JLT RL	UNITS	METHO)	PREPARATION- ANALYSIS DATE	PREP BATCH #
-	pH (solid)	8.6	Dilution Factor: 1	No Units	SW846	9045C	09/02/99	9252464
_	Flashpoint	>180	Dilution Factor: 1	deg F	SW846	1010	09/22/99	9265406
_	Reactive Cyanide	ND	200 Dilution Factor: 1	mg/kg	SW846	7.3.3	09/14-09/19/99	9262118
4	Reactive Sulfide	ND	200 Dilution Factor: 1	mg/kg	SW846	7.3.4	09/14-09/19/99	9262116

Client Sample ID: 8.11-002 MW-3

TCLP GC/MS Volatiles

Matrix..... SOLID

Date Sampled: 08/24/99 11:00	Date Received:	09/02/99	
Leach Date: 09/03/99	Prep Date:	09/10/99	Analysis Date: 09/10/99
Leach Batch #: P924508	Prep Batch #:	9250138	
■ Dilution Factor: 1			
% Moisture:	Method:	SW846 8260	В
_		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	0.025	mg/L
Carbon tetrachloride	ND	0.025	mg/L
Chlorobenzene	ND	0.025	mg/L
Chloroform	ND	0.025	mg/L
1,2-Dichloroethane	ND	0.025	mg/L
<pre>1,1-Dichloroethylene</pre>	ND	0.070	mg/L
Methyl ethyl ketone	ND	20	mg/L
Tetrachloroethylene	ND	0.070	mg/L
Trichloroethylene	ND	0.050	mg/L
Vinyl chloride	ND	0.050	mg/L
	PERCENT	RECOVERY	

LIMITS

(75 - 117)

(86 - 122)

(60 - 137)

(70 - 135)

NOTE (S)

SURROGATE

Toluene-d8

1,2 Dichloroethane-d4

Bromofluorobenzene

Dibromofluoromethane

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986).

RECOVERY

94

96

90

96

Lot · Sample #...: A9I020127-002 Work Order #...: D2256101

Client Sample ID: 8.11-002 MW-3

TCLP GC/MS Semivolatiles

Lot-Sample #:	A91020127-002	work Order #:	D2256102	Matrix SOLID
Date Sampled:	08/24/99 11:00	Date Received:	09/02/99	
Leach Date:	09/08/99	Prep Date:	09/09/99	Analysis Date: 09/14/99

Dilution Factor: 1

% Moisture....: Method.....: SW846 8270C

		REPORTING	_
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
o-Cresol	ND	0.050	mg/L
m-Cresol & p-Cresol	ND	0.10	mg/L
1,4-Dichlorobenzene	ND	0.050	mg/L
2,4-Dinitrotoluene	ND	0.050	mg/L
Hexachlorobenzene	ND	0.050	mg/L
Hexachlorobutadiene	ND	0.050	mg/L
Hexachloroethane	ND	0.050	mg/L
Nitrobenzene	ND	0.050	mg/L
Pentachlorophenol	ND	0.10	mg/L
Pyridine	ND	0.10	mg/L
2,4,5-Trichlorophenol	ND	0.050	mg/L
2,4,6-Trichlorophenol	ND	0.050	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	72	(44 - 110))
2-Fluorobiphenyl	71	(50 - 105	5)
Terphenyl-d14	120	(11 - 158	3)
Phenol-d5	32	(10 - 131	_)
2-Fluorophenol	12	(10 - 130))
2,4,6-Tribromophenol	65	(10 - 156	5)

NOTE(S):

Client Sample ID: 8.11-002 MW-3

TCLP GC Semivolatiles

Lot-Sample #: A9I02	:0127-002 Work Order	: #: D2256103	Matrix 9	SOLID
---------------------	----------------------	---------------	----------	-------

■ Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

Leach Date....: 09/08/99 Prep Date....: 09/09/99 Analysis Date..: 09/14/99

Leach Batch #..: P925102 Prep Batch #...: 9251148

Dilution Factor: 1

* Moisture....: Method.....: SW846 8081A

		REPORTING	;
PARAMETER	RESULT	LIMIT	UNITS
Chlordane (technical)	ND	0.0050	mg/L
Endrin	ND	0.00050	mg/L
Heptachlor	ND	0.00050	mg/L
Heptachlor epoxide	ND	0.00050	mg/L
Lindane	ND	0.00050	mg/L
Methoxychlor	ND	0.0010	mg/L
Toxaphene	ND	0.020	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Decachlorobiphenyl	59 *	(60 - 150)
Tetrachloro-m-xylene	77	(14 - 155)

NOTE(S):

Surrogate recovery is outside stated control limits.

Client Sample ID: 8.11-002 MW-3

TCLP GC Semivolatiles

-	Lot-Sample #: A9I020127-002 Date Sampled: 08/24/99 11:00 Leach Date: 09/08/99 Leach Batch #: P925102 Dilution Factor: 1		09/02/99 09/10/99	Matrix: SOLID Analysis Date: 09/17/99
	* Moisture:	Method:	SW846 8151.	A
	PARAMETER	RESULT	REPORTING LIMIT	UNITS
	2,4-D	ND	0.50	mg/L
	2,4,5-TP (Silvex)	ND	0.10	mg/L
•	SURROGATE 2,4-Dichlorophenylacetic acid	PERCENT RECOVERY 63	RECOVERY LIMITS (53 - 168)	

NOTE(S):

Client Sample ID: 8.11-002 MW-3

TCLP Metals

Lot-Sample #...: A91020127-002 Matrix....: SOLID

Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

Leach Date....: 09/08/99 Leach Batch #..: P925102

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Prep Batch #. Arsenic	: 9252299 ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2256105
Barium	ND	10.0 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2256106
Cadmium	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2256107
Chromium	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2256108
Lead	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2256109
Selenium	ND	0.25 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225610A
● Silver	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225610C
Mercury	ИD	0.0020 Dilution Factor: 1	mg/L	SW846 7470A	09/10-09/11/99	D225610D

Client Sample ID: 8.11-002 MW-3

General Chemistry

Lot-Sample #...: A9I020127-002 Work Order #...: D2256 Matrix.....: SOLID

■ Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

* Moisture....:

-	PARAMETER	RES	ULT RL	UNITS	METHO)	PREPARATION- ANALYSIS DATE	PREP BATCH #
	pH (solid)	8.8	Dilution Factor: 1	No Units	SW846	9045C	09/02/99	9252464
-	Flashpoint	>18	D Dilution Factor: 1	deg F	SW846	1010	09/22/99	9265406
-	Reactive Cyanide	ND	200 Dilution Factor: 1	mg/kg	SW846	7.3.3	09/14-09/19/99	9262118
	Reactive Sulfide	ND	200 Dilution Factor: 1	mg/kg	SW846	7.3.4	09/14-09/19/99	9262116

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP GC/MS Volatiles

	Lot Sample #:	A9I020127-003	Work Order #:	D2257101	Matrix: SOLID
•	Date Sampled:	08/25/99 17:00	Date Received:	09/02/99	
	Leach Date:		Prep Date:		Analysis Date: 09/10/99

Leach Batch #..: P924508

Prep Batch #...: 9250138

■ Dilution Factor: 1

% Moisture....: Method.....: SW846 8260B

			REPORTING	
•	PARAMETER	RESULT	LIMIT	UNITS
	Benzene	ND	0.025	mg/L
	Carbon tetrachloride	ND	0.025	mg/L
-	Chlorobenzene	ND	0.025	mg/L
	Chloroform	ND	0.025	mg/L
	1,2-Dichloroethane	ND	0.025	mg/L
_	1,1-Dichloroethylene	ND	0.070	mg/L
	Methyl ethyl ketone	ND	20	mg/L
	Tetrachloroethylene	ND	0.070	mg/L
	Trichloroethylene	ND	0.050	mg/L
_	Vinyl chloride	ND	0.050	mg/L
		PERCENT	RECOVERY	
-	SURROGATE	RECOVERY	LIMITS	
	1,2-Dichloroethane-d4	98	(75 - 117)	<u> </u>
	Toluene-d8	94	(86 - 122))
_	Bromofluorobenzene	90	(60 - 137))
	Dibromofluoromethane	97	(70 - 135))

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP GC/MS Semivolatiles

-	Lot-Sample #: A9I020127-003 Date Sampled: 08/25/99 17:00	Date Received:	09/02/99	Matrix: SOLID
	Leach Date: 09/08/99	Prep Date:		Analysis Date: 09/14/99
	Leach Batch #: P925102	Prep Batch #:	9251149	
-	Dilution Factor: 1			
	1 Moisture:	Method:	SW846 82700	C
_			REPORTING	
_	PARAMETER	RESULT	LIMIT	UNITS
	o-Cresol	ND	0.050	mg/L
	m-Cresol & p-Cresol	ND	0.10	mg/L
	1,4-Dichlorobenzene	ND	0.050	mg/L

	-,			····
	2,4 Dinitrotoluene	ND	0.050	mg/L
	Hexachlorobenzene	ND	0.050	mg/L
	Hexachlorobutadiene	ND	0.050	mg/L
	Hexachloroethane	ND	0.050	mg/L
	Nitrobenzene	ND	0.050	mg/L
_	Pentachlorophenol	ND	0.10	mg/L
•	Pyridine	ND	0.10	mg/L
	2,4,5-Trichlorophenol	ND	0.050	mg/L
	2,4,6-Trichlorophenol	ND	0.050	mg/L

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	72	(44 - 110)
2-Fluorobiphenyl	73	(50 - 105)
Terphenyl-d14	131	(11 - 158)
Phenol-d5	4.8 *	(10 - 131)
<pre>2-Fluorophenol</pre>	0.0 *	(10 - 130)
2,4,6-Tribromophenol	34	(10 - 156)

■ NOTE(S):

Surrogate recovery is outside stated control limits.

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP GC/MS Semivolatiles

Lot Sample #...: A91020127-003 Work Order #...: D2257202 Matrix.....: SOLID

■ Date Sampled...: 08/25/99 17:00 Date Received..: 09/02/99

Dilution Factor: 1

% Moisture....: Method.....: SW846 8270C

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
o-Cresol	ND	0.050	mg/L
m-Cresol & p-Cresol	ND	0.10	mg/L
1,4-Dichlorobenzene	ND	0.050	mg/L
2,4 Dinitrotoluene	ND	0.050	mg/L
Hexachlorobenzene	ND	0.050	mg/L
Hexachlorobutadiene	ND	0.050	mg/L
Hexachloroethane	ND	0.050	mg/L
Nitrobenzene	ND	0.050	mg/L
Pentachlorophenol	ND	0.10	mg/L
Pyridine	ND	0.10	mg/L
2,4,5-Trichlorophenol	ND	0.050	mg/L
2,4,6-Trichlorophenol	ND	0.050	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	64	(44 - 110)
2-Fluorobiphenyl	55	(50 - 105)
Terphenyl-d14	68	(11 - 158)
Phenol-d5	0.0 *	(10 - 131)
2-Fluorophenol	0.0 *	(10 - 130)
2,4,6-Tribromophenol	26	(10 - 156)

MOTE(S):

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP GC Semivolatiles

	roc-sample #:	A91020127-003	work Order #:	D225/103	Matrix:	SOLID
	Date Sampled:	08/25/99 17:00	Date Received:	09/02/99		
	Leach Date:	09/08/99	Prep Date:	09/09/99	Analysis Date:	09/14/99
	Leach Batch #:	P925102	Prep Batch #:	9251148		
_	Dilution Factor:	1				
	* Moisture:		Method:	SW846 8081A		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chlordane (technical)	ND	0.0050	mg/L
Endrin	ND	0.00050	mg/L
Heptachlor	ND	0.00050	mg/L
Heptachlor epoxide	ND	0.00050	mg/L
Lindane	ND	0.00050	mg/L
Methoxychlor	ND	0.0010	mg/L
Toxaphene	ND	0.020	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Decachlorobiphenyl	81	(60 - 150)	•
Tetrachloro-m-xylene	84	(14 - 155)	

NOTE(S):

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP GC Semivolatiles

	Lot-Sample #: A9	1020127-003	Work Order #:	D2257104	Matrix:	SOLID
	Date Sampled: 08	1/25/99 17:00	Date Received:	09/02/99		
	Leach Date: 09	/08/99	Prep Date:	09/10/99	Analysis Date:	09/17/99
	Leach Batch #: P9	25102	Prep Batch #:	9252316		
	Dilution Factor: 1					
-	* Moisture:		Method:	SW846 8151	A	
				REPORTING		
	PARAMETER		RESULT	LIMIT_	UNITS	
	2,4-D		ND	0.50	mg/L	
	2,4,5-TP (Silvex)		ND	0.10	mg/L	
			PERCENT	RECOVERY		
	SURROGATE		RECOVERY	LIMITS		
	2,4-Dichlorophenyla	cetic acid	70	(53 - 168)		

NOTE(S):

Client Sample ID: 8.11-003 MW-4&MW-5

TCLP Metals

Lot-Sample #...: A9I020127-003 Matrix....: SOLID

Date Sampled...: 08/25/99 17:00 Date Received..: 09/02/99

Leach Date....: 09/08/99 Leach Batch #..: P925102

-	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
-	Prep Batch # Arsenic	: 9252299 ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2257105
-	Barium	ND	10.0 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2257106
-	Cadmium	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2257107
	Chromium	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2257108
	Lead	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D2257109
-	Selenium	ND	0.25 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225710A
4	Silver	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225710C
•	Mercury	ND	0.0020 Dilution Factor: 1	mg/L	SW846 7470A	09/10-09/11/99	D225710D
4	NOTE (S):					·	

Annivers performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-003 MW-4&MW-5

General Chemistry

Lot-Sample #...: A9I020127-003 Work Order #...: D2257 Matrix.....: SOLID

■ Date Sampled...: 08/25/99 17:00 Date Received..: 09/02/99

* Moisture....:

	PARAMETER	RES	ULT	RL	UNITS	METHO	<u> </u>	PREPARATION- ANALYSIS DATE	PREP BATCH #
-	pH (solid)	8.9	Dilution	Factor: 1	No Units	SW846	9045C	09/02/99	9252464
_	Flashpoint	>180) Dilution	Factor: 1	deg F	SW846	1010	09/22/99	9265406
-	Reactive Cyanide	ND	Dilution	200 Factor: 1	mg/kg	SW846	7.3.3	09/14-09/19/99	9262118
	Reactive Sulfide	ND	Dilution	200 Factor: 1	mg/kg	SW846	7.3.4	09/14-09/19/99	9262116

Client Sample ID: 8.11-004 MW-6

TCLP GC/MS Volatiles

	Lot Sample #:	A9I020127-004	Work Order #:	D225A101	Matrix \$	SOLID
4	Date Sampled:	08/26/99 16:00	Date Received:	09/02/99		
	Leach Date:	09/03/99	Prep Date:	09/10/99	Analysis Date:	09/10/99

Leach Batch #..: P924508 Prep Batch #...: 9250138

Dilution Factor: 1

% Moisture....: Method.....: SW846 8260B

		REPORTIN	iG
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	0.025	mg/L
Carbon tetrachloride	ND	0.025	mg/L
Chlorobenzene	ND	0.025	mg/L
Chloroform	ND	0.025	mg/L
1,2-Dichloroethane	ND	0.025	mg/L
1,1-Dichloroethylene	ND	0.070	mg/L
Methyl ethyl ketone	ND	20	mg/L
Tetrachloroethylene	ND	0.070	mg/L
Trichloroethylene	ND	0.050	mg/L
Vinyl chloride	ND	0.050	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	97	(75 - 11	7)
Toluene-d8	95	(86 - 12	2)
Bromofluorobenzene	91	(60 - 13	7)
Dibromofluoromethane	96	(70 - 13	5)

Analysis performed in accordance with USLPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-004 MW-6

TCLP GC/MS Semivolatiles

Lot-Sample #: A9I020127-004	Work Order #	: D225A102	Matrix:	SOLID
-----------------------------	--------------	------------	---------	-------

■ Date Sampled...: 08/26/99 16:00 Date Received..: 09/02/99

Dilution Factor: 1

Method....: SW846 8270C

PARAMETER	RESULT	REPORTING LIMIT	UNITS
o-Cresol	ND	0.050	mg/L
m-Cresol & p-Cresol	ND	0.10	mg/L
1,4-Dichlorobenzene	ND	0.050	mg/L
2,4-Dinitrotoluene	ND	0.050	mg/L
Hexachlorobenzene	ND	0.050	mg/L
Hexachlorobutadiene	ND	0.050	mg/L
Hexachloroethane	ND	0.050	mg/L
Nitrobenzene	ND	0.050	mg/L
Pentachlorophenol	ND	0.10	mg/L
Pyridine	ND	0.10	mg/L
2,4,5-Trichlorophenol	ND	0.050	mg/L
2,4,6-Trichlorophenol	ND	0.050	mg/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	68	(44 - 110	<u> </u>
2-Fluorobiphenyl	66	(50 - 105)
Terphenyl-d14	127	(11 - 158)
Phenol-d5	34	(10 - 131)
2-Fluorophenol	13	(10 - 130)
2,4,6-Tribromophenol	62	(10 - 156))

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-004 MW-6

TCLP GC Semivolatiles

Lot-Sample #:	A9I020127-004	Work Order #	: D225A103	Matrix SOLID

■ Date Sampled...: 08/26/99 16:00 Date Received..: 09/02/99

Leach Date....: 09/08/99 Prep Date....: 09/09/99 Analysis Date..: 09/14/99

Leach Batch #..: P925102 Prep Batch #...: 9251148

Dilution Factor: 1

* Moisture....: Method.....: SW846 8081A

			REPORTING	
-	PARAMETER	RESULT	LIMIT	UNITS
	Chlordane (technical)	ND	0.0050	mg/L
	Endrin	ND	0.00050	mg/L
	Heptachlor	ND	0.00050	mg/L
	Heptachlor epoxide	ND	0.00050	mg/L
	Lindane	ND	0.00050	mg/L
-	Methoxychlor	ND	0.0010	mg/L
_	Toxaphene	ND	0.020	mg/L
		PERCENT	RECOVERY	
-	SURROGATE	RECOVERY	LIMITS	
	Decachlorobiphenyl	81	(60 - 150)	
	Tetrachloro-m-xylene	74	(14 - 155)	

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-004 MW-6

TCLP GC Semivolatiles

	LOC-Sample #: A9102012/-004	work Order #:	D225A104	Matrix SOLID
	Date Sampled: 08/26/99 16:00	Date Received:	09/02/99	
	Leach Date: 09/08/99	Prep Date:	09/10/99	Analysis Date: 09/17/99
	Leach Batch #: P925102	Prep Batch #:	9252316	
	Dilution Factor: 1			
	* Moisture:	Method:	SW846 8151	A
•				
			REPORTING	
	PARAMETER	RESULT	LIMIT	UNITS
_	2,4-D	ND	0.50	mg/L
_	2,4,5-TP (Silvex)	ND	0.10	mg/L
		PERCENT	RECOVERY	
4	SURROGATE	RECOVERY	LIMITS	
	2,4-Dichlorophenylacetic acid	79	(53 - 168)	

NOTE (S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986)

Client Sample ID: 8.11-004 MW-6

TCLP Metals

Lot-Sample #...: A9I020127-004 Matrix....: SOLID

 Date Sampled...:
 08/26/99
 16:00
 Date Received...
 09/02/99

 Leach Date.....:
 09/08/99
 Leach Batch #...
 P925102

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	<u>LIMIT</u>	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #.	: 9252299					
Arsenic	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A105
Barium	ND	10.0 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A106
Cadmium	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A107
Chromium	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A108
Lead	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A109
Selenium	ND	0.25 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A10A
Silver	ND	0.50 Dilution Factor: 1	mg/L	SW846 6010B	09/10-09/15/99	D225A10C
Mercury	ND	0.0020 Dilution Factor: 1	mg/L	SW846 7470A	09/10-09/11/99	D225A10D

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311 (55 FR 26986).

MOTR(S):

Client Sample ID: 8.11-004 MW-6

General Chemistry

Lot-Sample #...: A9I020127-004 Work Order #...: D225A

Date Sampled...: 08/26/99 16:00 Date Received..: 09/02/99 Matrix....: SOLID

* Moisture....:

PARAMETER	RESULT R	L UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (solid)	9.0 Dilution Fac	No Units	SW846 9045C	09/02/99	9252464
Flashpoint	>180 Dilution Fac	deg F	SW846 1010	09/22/99	9265406
Reactive Cyanide	ND 20 Dilution Fac	00 mg/kg ctor: 1	SW846 7.3.3	09/14-09/19/99	9262118
Reactive Sulfide	ND 20 Dilution Fac	00 mg/kg	SW846 7.3.4	09/14-09/19/99	9262116

QUALITY CONTROL SECTION

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

Quanterra[®] Incorporated conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. Quanterra requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). Failure of the RPDs to fall within the laboratory-generated acceptance windows requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the MS/MSD RPDs are within acceptance criteria, the batch is acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except for the common laboratory contaminants indicated below.

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	<u>Metals</u>
Methylene chloride Acetone 2-Butanone	Phthalate Esters	Copper Iron Zinc Lead*

^{*} for analyses run on TJA Trace ICP or GFAA only

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

The listed volatile and semivolatile compounds may be present in concentrations up to 5 times the reporting limits. The listed metals may be present in concentrations up to 2 times the reporting limit or must be twenty fold less than the results of the environmental samples. Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. When these values fail to meet acceptance criteria, the data is reviewed to determine the cause. If, in the analyst's judgment, sample matrix effects are indicated, no corrective action is performed. Otherwise, the MS/MSD and the environmental sample used to prepare them are reprepared and reanalyzed.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample are spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported. If the LCS, LCSD, or the Method Blank surrogates fail to meet recovery criteria (exception for dilutions), the entire batch of samples is reprepared and reanalyzed.

If the surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank and the associated sample(s) are ND, the batch is acceptable. If the surrogate recoveries are outside criteria for environmental or MS/MSD samples, the batch may be acceptable based on the analyst's judgment that sample matrix effects are indicated.

For the GC/MS BNA methods, the surrogate criteria is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide/PCB, PAH, TPH, and Herbicide methods, the surrogate criteria is that one of two surrogate compounds meet acceptance criteria.

Quanterra Incorporated - North Canton Facility, Certifications and Approvals:

Alabama (*411**0), California (*215**), Connecticut (*PII-0590), Florida (*E87225) – Florida CompQAPP (**890651G), Kentucky (**90021), Massachusetts (*M-OII048), Maryland (**272), Minnesota (**39-999-348), Missouri (**6090), New Jersey (*****14001), New York (**10975), North Dakota (**R-156), Ohio (**6090), OhioVAP (**C'1.0024), Pennsylvania (**68-340), South Carolina (**92007001, **92007002, **92007003), Tennessee (**02903), West Virginia (**210), Wisconsin (**299518190), NAVY, ARMY, USDA Soil Permit

GC/MS Volatiles

Client Lot #...: A9I020127 Work Order #...: D25PM102 Matrix.....: SOLID

LCS Lot-Sample#: A9I070000-138

Prep Date....: 09/07/99 **Analysis Date..:** 09/07/99

Prep Batch #...: 9250138

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethylene	109	(76 - 128)	SW846 8260B
Trichloroethylene	95	(86 - 116)	SW846 8260B
Chlorobenzene	103	(88 - 119)	SW846 8260B
Benzene	108	(85 - 120)	SW846 8260B
Toluene	105	(86 - 118)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
1,2-Dichloroethane-d4		93	(75 - 117)
Toluene-d8		101	(86 - 122)
Bromofluorobenzene		96	(60 - 137)
Dibromofluoromethane		99	(70 - 135)

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D2LL7102 Matrix.....: SOLID

■ LCS Lot-Sample#: A9I180000-107

Prep Date....: 09/18/99 Analysis Date..: 09/22/99

Prep Batch #...: 9261107

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,4-Dichlorobenzene	62	(34 - 113)	SW846 8270C
2,4-Dinitrotoluene	62	(41 - 154)	SW846 8270C
Hexachlorobenzene	86	(57 - 118)	SW846 8270C
Hexachlorobutadiene	71	(44 - 104)	SW846 8270C
Hexachloroethane	62	(39 - 96)	SW846 8270C
Nitrobenzene	74	(49 - 111)	SW846 8270C
Pentachlorophenol	31	(24 - 145)	SW846 8270C
Pyridine	49	(5.0- 99)	SW846 8270C
2,4,5-Trichlorophenol	62	(43 - 118)	SW846 8270C
2,4,6-Trichlorophenol	65	(45 - 102)	SW846 8270C
o-Cresol	65	(46 - 109)	SW846 8270C
m-Cresol & p-Cresol	62	(46 - 109)	SW846 8270C
Cresols (total)	63	(46 - 109)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Nitrobenzene-d5		74	(44 - 110)
2-Fluorobiphenyl		66	(50 - 105)
Terphenyl-dl4		90	(11 - 158)
Phenol-d5		54	(10 - 131)
2-Fluorophenol		66	(10 - 130)
2,4,6-Tribromophenol		76	(10 - 156)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D26JP102 Matrix.....: SOLID

■ LCS Lot-Sample#: A9I080000-149

Prep Date....: 09/09/99 **Analysis Date..:** 09/14/99

Prep Batch #...: 9251149

_ Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,4-Dichlorobenzene	60	(34 - 113)	SW846 8270C
2,4-Dinitrotoluene	68	(41 - 154)	SW846 8270C
Hexachlorobenzene	90	(57 - 118)	SW846 8270C
Hexachlorobutadiene	66	(44 - 104)	SW846 8270C
Hexachloroethane	56	(39 - 96)	SW846 8270C
Nitrobenzene	74	(49 - 111)	SW846 8270C
Pentachlorophenol	30	(24 - 145)	SW846 8270C
Pyridine	55	(5.0- 99)	SW846 8270C
2,4,5-Trichlorophenol	57	(43 - 118)	SW846 8270C
2,4,6-Trichlorophenol	61	(45 - 102)	SW846 8270C
o-Cresol	57	(46 - 109)	SW846 8270C
m-Cresol & p-Cresol	5 6	(46 - 109)	SW846 8270C
Cresols (total)	56	(46 - 109)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	<u>LIMITS</u>
Nitrobenzene-d5		72	(44 - 110)
2-Fluorobiphenyl		71	(50 - 105)
Terphenyl-d14		117	(11 - 158)
Phenol-d5		42	(10 - 131)
2-Fluorophenol		23	(10 - 130)
2,4,6-Tribromophenol		71	(10 - 156)

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D2615102 Matrix.....: SOLID

LCS Lot-Sample#: A91070000-215

Prep Date....: 09/08/99 Analysis Date..: 09/13/99

Prep Batch #...: 9250215

■ Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
o-Cresol	73	(46 - 109)	SW846 8270C
m-Cresol & p-Cresol	72	(46 - 109)	SW846 8270C
1,4-Dichlorobenzene	64	(34 - 113)	SW846 8270C
2,4-Dinitrotoluene	77	(41 - 154)	SW846 8270C
Hexachlorobenzene	88	(57 - 118)	SW846 8270C
Hexachlorobutadiene	64	(44 - 104)	SW846 8270C
Hexachloroethane	61	(39 - 96)	SW846 8270C
Nitrobenzene	77	(49 - 111)	SW846 8270C
Pentachlorophenol	71	(24 - 145)	SW846 8270C
Pyridine	47	(5.0- 99)	SW846 8270C
2,4,5-Trichlorophenol	74	(43 - 118)	SW846 8270C
2,4,6-Trichlorophenol	72	(45 - 102)	SW846 8270C
Cresols (total)	73	(46 - 109)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
2,4,6-Tribromophenol		85	(10 - 156)
Nitrobenzene-d5		75	(44 - 110)
2-Fluorobiphenyl		75	(50 - 105)
Terphenyl-d14		100	(11 - 158)
Phenol d5		58	(10 - 131)
2-Fluorophenol		31	(10 - 130)

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D26JN102-LCS Matrix.....: SOLID

■ LCS Lot-Sample#: A9I080000-148 D26JN103-LCSD

Prep Date....: 09/09/99 **Analysis Date..:** 09/14/99

Prep Batch #...: 9251148

Dilution Factor: 5

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD LIMITS	METHOD
Lindane	96	(50 - 150)		SW846 8081A
	82	(50 - 150)	15 (0-50)	SW846 8081A
Heptachlor	96	(50 - 150)		SW846 8081A
1	87	(50 - 150)	9.8 (0-50)	SW846 8081A
Heptachlor epoxide	93	(50 - 150)		SW846 8081A
_	84	(50 - 150)	9.8 (0-50)	SW846 8081A
Endrin	107	(50 - 150)		SW846 8081A
•	99	(50 - 150)	7.6 (0-50)	SW846 8081A
Methoxychlor	99	(50 - 150)		SW846 8081A
•	88	(50 - 150)	12 (0-50)	SW846 8081A
		PERCENT	RECOVERY	
SURROGATE	_	RECOVERY	LIMITS	
Decachlorobiphenyl	_	101	(60 - 150)	
		91	(60 - 150)	
Tetrachloro-m-xylene		92	(14 - 155)	
•		78	(14 - 155)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D260K102-LCS Matrix.....: SOLID

LCS Lot-Sample#: A9I070000-211 D260K103-LCSD

Prep Date....: 09/08/99 Analysis Date..: 09/11/99

Prep Batch #...: 9250211

Dilution Factor: 5

DADAMETED	PERCENT	RECOVERY	RPD	VERTION.
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Lindane	69	(50 - 150)		SW846 8081A
	73	(50 - 150)	5.6 (0-50)	SW846 8081A
H e ptachlor	72	(50 - 150)		SW846 8081A
	78	(50 - 150)	6.7 (0-50)	SW846 8081A
Heptachlor epoxide	75	(50 - 150)		SW846 8081A
	81	(50 - 150)	7.7 (0-50)	SW846 8081A
Endrin	89	(50 - 150)		SW846 8081A
	96	(50 - 150)	8.1 (0-50)	SW846 8081A
Methoxychlor	156 a	(50 - 150)		SW846 8081A
	118	(50 - 150)	28 (0-50)	SW846 8081A
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Decachlorobiphenyl		82	(60 - 150)	
		86	(60 - 150)	
Tetrachloro-m-xylene		72	(14 - 155)	
_		75	(14 - 155)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results

a. Spiked analyte recovery is outside stated control limits.

GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D28WL102 Matrix.....: SOLID

LCS Lot-Sample#: A9I090000-314

Prep Date....: 09/10/99 Analysis Date..: 09/17/99

Prep Batch #...: 9252314

Dilution Factor: 1

	PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	
	2,4-D	78	(58 - 132)	SW846 8151A	
	2,4,5-TP (Silvex)	72	(25 - 122)	SW846 8151A	
ı			PERCENT	RECOVERY	
	CIPPOCATE		PECOVERY	ITMTTC	

SURROGATE RECOVERY LIMITS

2,4-Dichlorophenylacetic 83 (53 - 168)

acid

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D28WT102 Matrix.....: SOLID

LCS Lot-Sample#: A91090000-316

Prep Batch #...: 9252316

Dilution Factor: 1

PERCENT RECOVERY
PARAMETER RECOVERY LIMITS

 PARAMETER
 RECOVERY
 LIMITS
 METHOD

 2,4-D
 79
 (58 - 132)
 SW846 8151A

 2,4,5-TP (Silvex)
 75
 (25 - 122)
 SW846 8151A

SURROGATEPERCENTRECOVERY2,4-Dichlorophenylacetic70LIMITS(53 - 168)

acid

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP Metals

Client Lot #:	A91020127			Matrix	: SOLID
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Silver	111	209 Prep Bat (50 - 150) ution factor: 1	t ch #: 9251209 SW846 6010B	09/09-09/15/99	D26QV10A
Mercury	91 Dil	(50 - 150) ution Factor: 1	SW846 7470A	09/09-09/10/99	D26QV10C
Arsenic		(50 - 150) ution Factor: 1	SW846 6010B	09/09-09/15/99	D26QV10D
Barium		(50 - 150) ution Factor: 1	SW846 6010B	09/09-09/15/99	D26QV10E
■ Cadmium		(50 - 150) ution Factor: 1	SW846 6010B	09/09-09/15/99	D26QV10F
_Chromium		(50 - 150) ution Factor: 1	SW846 6010B	09/09-09/15/99	D26QV10G
Lead		(50 - 150) ution factor: 1	SW846 6010B	09/09-09/15/99	D26QV10H
Selenium -		(50 - 150) ution Factor: 1	SW846 6010B	09/09-09/15/99	D26QV109
. Halame2-to1 221	X9T090000 -	299 Prop Rat	ch #: 9252299		
Silver	105		SW846 6010B	09/10-09/15/99	D28PE10A
Mercury		(50 - 150) ution Factor: 1	SW846 7470A	09/10-09/11/99	D28PE10C
Arsenic	100 Dil	(50 - 150) ution Factor: 1	SW846 6010B	09/10-09/15/99	D28PE10D
Barium	99 Dil	(50 - 150) ution Factor: 1	SW846 6010B	09/10-09/15/99	D28PE10E
Cadmium	106 Dil	(50 - 150) ution Factor: 1	SW846 6010B	09/10-09/15/99	D28PE10F

(Continued on next page)

TCLP Metals

_	Client Lot #:	A9I020127			Matrix	: SOLID
-	PARAMETER Chromium	PERCENT RECOVERY 112	RECOVERY LIMITS (50 - 150) ution factor: 1	METHOD SW846 6010B	PREPARATION- ANALYSIS DATE 09/10-09/15/99	WORK ORDER # D28PE10G
-	Lead	102 pil	(50 - 150) ution Factor: 1	SW846 6010B	09/10-09/15/99	D28PE10H
	Selenium	100 Dil	(50 - 150) ution factor: 1	SW846 6010B	09/10-09/15/99	D28PE109

Calculations are performed before rounding to avoid round off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9I020127 Work Order #...: D25PM101 Matrix.....: SOLID MB Lot-Sample #: A9I070000-138

Prep Date....: 09/07/99

■ Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	0.025	mg/L	SW846 8260B
Chlorobenzene	ND	0.025	mg/L	SW846 8260B
1,1-Dichloroethylene	ИD	0.070	mg/L	SW846 8260B
Trichloroethylene	ND	0.050	mg/L	SW846 8260B
Carbon tetrachloride	ND	0.025	mg/L	SW846 8260B
Chloroform	ND	0.025	mg/L	SW846 8260B
■ 1,2-Dichloroethane	ND	0.025	mg/L	SW846 8260B
Methyl ethyl ketone	ND	20	mg/L	SW846 8260B
Tetrachloroethylene	ND	0.070	mg/L	SW846 8260B
Vinyl chloride	ND	0.050	mg/L	SW846 8260B
	PERCENT	RECOVERY	Z	
SURROGATE	RECOVERY	<u>LIMITS</u>		
1,2-Dichloroethane-d4	95	(75 - 11	L7)	
Toluene-d8	99	(86 - 12	22)	
Bromofluorobenzene	98	(60 - 13	37)	
■Dibromofluoromethane	103	(70 - 13	35)	

Calculations are performed before rounding to avoid found-off errors in calculated results.

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D2LL7101 Matrix.....: SOLID

■ MB Lot-Sample #: A9I180000-107

Leach Batch #..: P925102 Prep Batch #...: 9261107

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT _	UNITS	METHOD
o-Cresol	ND	0.050	mg/L	SW846 8270C
m-Cresol & p-Cresol	ND	0.10	mg/L	SW846 8270C
1,4-Dichlorobenzene	ND	0.050	mg/L	SW846 8270C
2,4-Dinitrotoluene	ND	0.050	mg/L	SW846 8270C
Hexachlorobenzene	ND	0.050	mg/L	SW846 8270C
Hexachlorobutadiene	ND	0.050	mg/L	SW846 8270C
Hexachloroethane	ND	0.050	mg/L	SW846 8270C
Nitrobenzene	ND	0.050	mg/L	SW846 8270C
Pentachlorophenol	ND	0.10	mg/L	SW846 8270C
Pyridine	ND	0.10	mg/L	SW846 8270C
2,4,5-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
2,4,6-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	69	(44 - 11	_0)	
2-Fluorobiphenyl	59	(50 - 10)5)	
Terphenyl-d14	75	(11 - 15	88)	
Phenol-d5	49	(10 - 13	31)	
2-Fluorophenol	60	(10 - 13	30)	
2,4,6-Tribromophenol	54	(10 - 15	6)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127

MB Lot-Sample #: A9I080000-149

Work Order #...: D26JP101

Matrix....: SOLID

Leach Date....: 09/08/99

Prep Date....: 09/09/99

Analysis Date..: 09/14/99

Leach Batch #..: P925102

Prep Batch #...: 9251149

■ Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
o-Cresol	ND	0.050	mg/L	SW846 8270C
m-Cresol & p-Cresol	ND	0.10	mg/L	SW846 8270C
1,4-Dichlorobenzene	ND	0.050	mg/L	SW846 8270C
■2,4-Dinitrotoluene	ND	0.050	mg/L	SW846 8270C
Hexachlorobenzene	ND	0.050	mg/L	SW846 8270C
Hexachlorobutadiene	ND	0.050	mg/L	SW846 8270C
-Hexachloroethane	ND	0.050	mg/L	SW846 8270C
Nitrobenzene	ND	0.050	mg/L	SW846 8270C
Pentachlorophenol	ND	0.10	mg/L	SW846 8270C
_Pyridine	ND	0.10	mg/L	SW846 8270C
2,4,5-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
2,4,6-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
•	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	72	(44 - 11	LO)	
_2-Fluorobiphenyl	73	(50 - 10)5)	
Terphenyl-d14	110	(11 - 15	58)	
Phenol-d5	58	(10 - 13	31)	
2-Fluorophenol	52	(10 - 13	30)	
2,4,6-Tribromophenol	76	(10 - 15	56)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC/MS Semivolatiles

Work Order #...: D2615101

Client Lot #...: A9I020127

■ MB Lot-Sample #: A9I070000-215

Leach Date....: 09/04/99

Leach Batch #..: P924701

Prep Date....: 09/08/99 **Prep Batch #...:** 9250215

REPORTING

Matrix....: SOLID

Analysis Date..: 09/13/99

_ Dilution Factor: 1

PARAMETER	RESULT	LIMIT	UNITS	METHOD
- o-Cresol	ND	0.050	mg/L	SW846 8270C
m-Cresol & p-Cresol	ND	0.10	mg/L	SW846 8270C
1,4-Dichlorobenzene	ND	0.050	mg/L	SW846 8270C
■ 2,4-Dinitrotoluene	ND	0.050	mg/L	SW846 8270C
Hexachlorobenzene	ND	0.050	mg/L	SW846 8270C
Hexachlorobutadiene	ND	0.050	mg/L	SW846 8270C
Hexachloroethane	ND	0.050	mg/L	SW846 8270C
Nitrobenzene	ND	0.050	mg/L	SW846 8270C
Pentachlorophenol	ND	0.10	mg/L	SW846 8270C
Pyridine	ND	0.10	mg/L	SW846 8270C
2,4,5-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
2,4,6-Trichlorophenol	ND	0.050	mg/L	SW846 8270C
•	PERCENT	RECOVERY	ď	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	77	(44 - 11	LO)	
2-Fluorobiphenyl	75	(50 - 10	05)	

	I DICCENT	KECO VEKT		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	77	(44 - 110)		
2-Fluorobiphenyl	75	(50 - 105)		
Terphenyl-d14	108	(11 - 158)		
Phenol-dS	62	(10 - 131)		
2-Fluorophenol	41	(10 - 130)		
2,4,6-Tribromophenol	84	(10 - 156)		

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC Semivolatiles

Work Order #...: D26JN101 Client Lot #...: A9I020127 Matrix....: SOLID

■MB Lot-Sample #: A9I080000-148

Leach Date....: 09/08/99 Prep Date....: 09/09/99 Analysis Date..: 09/14/99

Leach Batch #..: P925102 Prep Batch #...: 9251148

_Dilution Factor: 1

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Chlordane (technical)	ND	0.0050	mg/L	SW846 8081A		
Endrin	ND	0.00050	mg/L	SW846 8081A		
Heptachlor	ND	0.00050	mg/L	SW846 8081A		
■Heptachlor epoxide	ND	0.00050	mg/L	SW846 8081A		
Lindane	ND	0.00050	mg/L	SW846 8081A		
Methoxychlor	ND	0.0010	mg/L	SW846 8081A		
Toxaphene	ND	0.020	mg/L	SW846 8081A		
	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS				
Decachlorobiphenyl	86	(60 - 15	<u>0)</u>			

Tetrachloro-m-xylene 81 (14 - 155)

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D260K101 Matrix.....: SOLID

■ MB Lot-Sample #: A9I070000-211

■ Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chlordane (technical)	ND	0.0050	mg/L	SW846 8081A
Endrin	ND	0.00050	mg/L	SW846 8081A
Heptachlor	ND	0.00050	mg/L	SW846 8081A
Heptachlor epoxide	ND	0.00050	mg/L	SW846 8081A
Lindane	ND	0.00050	mg/L	SW846 8081A
Methoxychlor	ND	0.0010	mg/L	SW846 8081A
Toxaphene	ND	0.020	mg/L	SW846 8081A
011BB0 G1 BB	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	83	(60 - 150	•	
Tetrachloro-m-xylene	79	(14 - 155	5)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D28WL101 Matrix.....: SOLID

MB Lot-Sample #: A9I090000-314

Leach Date....: 09/04/99 Prep Date....: 09/10/99 Analysis Date..: 09/17/99

Leach Batch #..: P924701 Prep Batch #...: 9252314

Dilution Factor: 1

			REPORTIN			
4	PARAMETER	RESULT	LIMIT	UNITS	METHOD	
	2,4-D	ND	0.50	mg/L	SW846 8151A	
	2,4,5-TP (Silvex)	ND	0.10	mg/L	SW846 8151A	
-		PERCENT	RECOVERY			
	SURROGATE	RECOVERY	LIMITS			
	2.4-Dichlorophenylacetic	81	(53 - 16)	8)		

NOTE (S):

acid

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D28WT101 Matrix....: SOLID

MB Lot-Sample #: A9I090000-316

Leach Date....: 09/08/99 Prep Date....: 09/10/99 Analysis Date..: 09/17/99 Leach Batch #..: P925102 Prep Batch #...: 9252316

Dilution Factor: 1

REPORTING

PARAMETER RESULT <u>LIM</u>IT UNITS <u>METH</u>OD 2,4-D ND 0.50 mg/L SW846 8151A 2,4,5-TP (Silvex) ND 0.10 mg/L SW846 8151A

PERCENT RECOVERY SURROGATE RECOVERY LIMITS 2,4-Dichlorophenylacetic (53 - 168)72

acid

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP Metals

PARAMETER	PESUL'	REPORTI LIMIT	NG <u>UNITS</u>	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER
MB [ot-Sampl	e #: A9I0	10000-101 Prep	Batch #	: 9251209		
Leach Date	: 09/04	1/99 Leach	Batch #	: P924701		
Arsenic	ND	0.50	mg/L	SW846 6010B	09/09-09/15/99	D24XMI
		Dilution Factor:	1			
Barium	ND	10.0	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
		Dilution Factor:	1			
Cadmium	ND	0.10	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
		Dilution Factor:	1			
Chromium	ND	0.50	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
		Dilution Factor:	_		, , , ,	
Lead	ND	0.50	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
		Dilution Factor:	•		, , . , . , . , . , . , . , . , . ,	
Selenium	ND	0.25	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
		Dilution Factor:	_		11,00 01,20,00	
Mercury	ND	0.0020	mg/L	SW846 7470A	09/09-09/10/99	D24XM1
,		Dilution Factor:	-	2,1010 / 1,7011	02,03 02,20,30	
Silver	ND	0.50	mg/L	SW846 6010B	09/09-09/15/99	D24XM1
-		Dilution Factor:	_		, ••,,,	
MB Kot-Sampl Loach Dato Arsenic		0000-272	Batch #		09/10-09/15/99	D27831
Barium	מא	10.0	mg/L	SW846 6010B	09/10-09/15/99	D27931
		Dilution Factor:	_	5.010 0010D	07,20 07,23,37	-2.03-
Cadmium	ND	0.10	mg/L	SW846 6010B	09/10-09/15/99	D27831
Acuntiun		Dilution Factor:	1		·	
ecan i ilii						
Acun rum Arromium	ND	0.50	mg/L	SW846 6010B	09/10-09/15/99	D27831
	ND	0.50 Dilution Factor:		SW846 6010B	09/10-09/15/99	D27831
	ND ND			SW846 6010B SW846 6010B	09/10-09/15/99 09/10-09/15/99	

(Continued on next page)

TCLP Metals

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		PREPARATION- ANALYSIS DATE	WORK ORDER #
	Selenium	ND Diluti	0.25 on factor: 1	mg/L	SW846 60	010B	09/10-09/15/99	D2783101
_	Mercury	ND Diluti	0.0020 on Factor: 1	mg/L	SW846 74	470A	09/10-09/11/99	D2783103
	Silver	ND Diluti	0.50 on Factor: 1	mg/L	SW846 60	010B	09/10-09/15/99	D2783102

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP Metals

	Client Lot #: A91020127							Matrix SOLID			
•	PARAMETER	RESULT	REPORT: LIMIT	ING	UNITS	METHO	D		PREPARATION - ANALYSIS DATE	WORK ORDER #	
	MB Lot-Sample #	: A910800	00-209 Prep	Ва	tch #:	9251209					
-	Arsenic	ND	0.50 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV104	
-	Barium	ND	10.0 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV105	
4	Cadmium	ND	0.10 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV106	
•	Chromium	ND	0.50 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV107	
	Lead	ND	0.50 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV108	
	Selenium	ND	0.25 Dilution Factor:	1	mg/L	SW846	6010B	•	09/09-09/15/99	D26QV101	
***	Mercury	ND	0.0020 Dilution Factor:	1	mg/L	SW846	7470A		09/09-09/10/99	D26QV103	
-	Silver	ND	0.50 Dilution Factor:	1	mg/L	SW846	6010B		09/09-09/15/99	D26QV102	
4											
	MB Lot-Sample #:	A910900		Bat							
4	Arsenic	ND	0.50 Dilution Factor:	1,	mg/L	SW846	6010B		09/10-09/15/99	D28PE104	
-	Barium	ND	10.0 Dilution factor:		mg/L	SW846	6010B		09/10-09/15/99	D28PE105	
_	Cadmium	ND	0.10 Dilution Factor:	1	mg/L	SW846	6010B		09/10-09/15/99	D28PE106	
_	Chromium	ND	0.50 Dilution Factor:	1	mg/L	SW846	6010B		09/10-09/15/99	D28PE107	
	Lead	ND	0.50 Dilution Factor:	i	mg/L	SW846	6010B		09/10-09/15/99	D28PE108	
	Selemium	ND	0.25 Dilution Factor:	1	mg/L	SW846	6010B		09/10-09/15/99	D28PE101	

(Continued on next page)

TCLP Metals

Client Lot #...: A91020127

Matrix....: SOLID

_			REPORTING			PREPARATION-	WORK	
	PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #_	
	Mercury	ND	0.0020	mg/L	SW846 7470A	09/10-09/11/99	D28PE103	
			Dilution Factor: 1					
	Silver	ND	0.50	mg/L	SW846 6010B	09/10-09/15/99	D28PE102	
			Dilution Factor: 1					
-								

NOTK(S):

Calculations are performed before rounding to avoid round-off errors in calculated results,

General Chemistry

Client Lot #...: A9I020127

Matrix....: WASTE

_			REPORTING	PREPARATION-	PREP		
_	PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
	Reactive Cyanide	3	Work Order	#: D2MAX101	MB Lot-Sample #:	A9I190000-118	
		ND	200	mg/kg	SW846 7.3.3	09/14-09/19/99	9262118
-		Dí	lution Factor: 1				
-	Reactive Sulfide	ND	Work Order 200 lution factor: 1	#: D2MAV101 mg/kg	MB Lot-Sample #: SW846 7.3.4	A9I190000-116 09/14-09/19/99	9262116

NOTE (S):

Calculations are performed before rousing to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TCLP GC/MS Volatiles

Client Lot #...: A91020127 Work Order #...: D22LX102-MS Matrix.....: SOLID

MS Lot-Sample #: A9I020177-001 D22LX103-MSD

Date Sampled...: 09/01/99 14:04 Date Received..: 09/02/99

Dilution Factor: 1

	PERCENT	RECOVERY		RPD			
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO	<u> </u>	
1,1-Dichloroethylene	100	(75 - 131)			SW846	8260B	
	101	(75 - 131)	1.1	(0-17)	SW846	8260B	
Trichloroethylene	93	(78 - 121)			SW846	8260B	
	95	(78 - 121)	1.8	(0-17)	SW846	8260B	
Chlorobenzene	96	(76 - 122)			SW846	8260B	
-	101	(76 - 122)	5.0	(0-22)	SW846	8260B	
Benzene	103	(84 - 121)			SW846	8260B	
	107	(84 - 121)	4.0	(0-13)	SW846	8260B	
Toluene	96	(79 - 129)			SW846	8260B	
_	99	(79 - 129)	2.4	(0-23)	SW846	8260B	
		PERCENT		RECOVERY			
SURROGATE		RECOVERY		LIMITS			
1,2-Dichloroethane-d4		90		(75 - 117	7)		
		92		(75 - 117	')		
■Toluene-d8		95		(86 - 122	!)		
		100		(86 - 122	2)		
Bromofluorobenzene		98		(60 - 137	7)		
		101		(60 - 137	')		
Dibromofluoromethane		98		(70 - 135	5)		
		97		(70 - 135	;)		

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE EVALUATION REPORT

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D225A10L-MS Matrix.....: SOLID

MS Lot-Sample #: A9I020127-004 D225A10M-MSD

Date Sampled...: 08/26/99 16:00 Date Received..: 09/02/99

Leach Batch #..: P925102 Prep Batch #...: 9251149

Dilution Factor: 1

1,4-Dichlorobenzene 63 (34 - 105) 43 (0-32) SW846 8270C 1,4-Dichlorobenzene 63 (34 - 105) 5W846 8270C 2,4-Dinitrotoluene 73 (10 - 154) 5W846 8270C 48 (10 - 154) 41 (0-42) 5W846 8270C 48 (10 - 154) 41 (0-42) 5W846 8270C Glexachlorobenzene 95 (33 - 123) 5W846 8270C Hexachlorobutadiene 66 (27 - 107) 5W846 8270C 45 p (27 - 107) 38 (0-24) 5W846 8270C Glexachloroethane 58 (24 - 107) 38 (0-24) 5W846 8270C Vitrobenzene 79 (40 - 118) 37 (0-25) 5W846 8270C Pentachlorophenol 48 (10 - 148) 48 (0-75) 5W846 8270C Pyridine 55 (22 - 96) 34 (0-52) 5W846 8270C 2,4,5-Trichlorophenol 67 (25 - 136) 66 (0-62) 5W846 8270C	_	PERCENT	RECOVERY		RPD	
## A S a, P	PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
## Cresol & p-Cresol	o-Cresol	69				SW846 8270C
1,4-Dichlorobenzene		45 a,p	(46 - 109)	41	(0-32)	SW846 8270C
1,4-Dichlorobenzene	■m-Cresol & p-Cresol	69	(46 - 109)			SW846 8270C
12 p		45 a,p	(46 - 109)	43	(0-32)	SW846 8270C
2,4-Dinitrotoluene	1,4-Dichlorobenzene	63	(34 - 105)			SW846 8270C
March Marc		42 p	(34 - 105)	41	(0-21)	SW846 8270C
Sexachlorobenzene	2,4-Dinitrotoluene	73	(10 - 154)			SW846 8270C
Hexachlorobutadiene		48	(10 - 154)	41	(0-42)	SW846 8270C
	Hexachlorobenzene	95	(33 - 123)			SW846 8270C
March Marc		63 p	(33 - 123)	40	(0-23)	SW846 8270C
Second S	Hexachlorobutadiene	66	(27 - 107)			SW846 8270C
Nitrobenzene		45 p	(27 - 107)	38	(0-24)	SW846 8270C
Vitrobenzene	■ lexachloroethane	58	(24 - 107)			SW846 8270C
Vitrobenzene 79 (40 - 118) SW846 8270C 54 p (40 - 118) 37 (0-25) SW846 8270C Pentachlorophenol 48 (10 - 148) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 2yridine 55 (22 - 96) 34 (0-52) SW846 8270C 2,4,5-Trichlorophenol 67 (25 - 136) 5W846 8270C 2,4,6-Trichlorophenol 73 (20 - 127) SW846 8270C 2,4,6-Trichlorophenol 47 (20 - 127) 44 (0-55) SW846 8270C 2,resols (total) 69 (22 - 115) 5W846 8270C SW846 8270C 3 (22 - 115) 42 (0-43) SW846 8270C SW846 8270C 3 (22 - 115) 42 (0-43) SW846 8270C SW846 8270C 3 (22 - 115) 42 (0-43) SW846 8270C SW846 8270C 3 (22 - 115) 42 (0-43) SW846 8270C SW846 8270C 3 (30 - 100) 50 (0-43) SW846 8270C SW846 8270C SW846 8270C SW846 8270C <td>39 p</td> <td>(24 - 107)</td> <td>38</td> <td>(0-20)</td> <td>SW846 8270C</td>		39 p	(24 - 107)	38	(0-20)	SW846 8270C
Pentachlorophenol 48 (10 - 148) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 20 SW846 8270C 20 - 96) 34 (0-52) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 127) SW846 8270C 20 - 127) 44 (0-55) SW846 8270C 21 - 136) 45 (22 - 115) 5 SW846 8270C 22 - 115) 42 (0-43) SW846 8270C 23 - 136) 46 (0-62) SW846 8270C 24 - 136) 47 (10 - 131) 25 - Fluorophenol 5	Vitrobenzene		(40 - 118)			SW846 8270C
Pentachlorophenol 48 (10 - 148) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 29 (10 - 148) 48 (0-75) SW846 8270C 20 SW846 8270C 20 - 96) 34 (0-52) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 136) 46 (0-62) SW846 8270C 20 - 127) SW846 8270C 20 - 127) 44 (0-55) SW846 8270C 21 - 136) 45 (22 - 115) 5 SW846 8270C 22 - 115) 42 (0-43) SW846 8270C 23 - 136) 46 (0-62) SW846 8270C 24 - 136) 47 (10 - 131) 25 - Fluorophenol 5		54 p	(40 - 118)	37	(0-25)	SW846 8270C
Syridine S5	Pentachlorophenol	-			•	SW846 8270C
39		29	(10 - 148)	48	(0-75)	SW846 8270C
2,4,5-Trichlorophenol 67 (25 - 136) SW846 8270C 42 (25 - 136) 46 (0-62) SW846 8270C 2,4,6-Trichlorophenol 73 (20 - 127) SW846 8270C 47 (20 - 127) 44 (0-55) SW846 8270C Tresols (total) 69 (22 - 115) SW846 8270C 45 (22 - 115) 42 (0-43) SW846 8270C PERCENT RECOVERY SURROGATE RECOVERY Titrobenzene-d5 76 (44 - 110) -Fluorobiphenyl 77 (50 - 105) Terphenyl-d14 127 (11 - 158) henol-d5 59 (10 - 131) 2-Fluorophenol 47 (10 - 130)	Pyridine	55	(22 - 96)		-	SW846 8270C
2,4,5-Trichlorophenol 67 (25 - 136) SW846 8270C 42 (25 - 136) 46 (0-62) SW846 8270C 2,4,6-Trichlorophenol 73 (20 - 127) SW846 8270C 47 (20 - 127) 44 (0-55) SW846 8270C Tresols (total) 69 (22 - 115) SW846 8270C 45 (22 - 115) 42 (0-43) SW846 8270C PERCENT RECOVERY SURROGATE RECOVERY Titrobenzene-d5 76 (44 - 110) -Fluorobiphenyl 77 (50 - 105) Terphenyl-d14 127 (11 - 158) henol-d5 59 (10 - 131) 2-Fluorophenol 47 (10 - 130)		39	(22 - 96)	34	(0-52)	SW846 8270C
### Control	2,4,5-Trichlorophenol	67				SW846 8270C
A7		42	(25 - 136)	46	(0-62)	SW846 8270C
Tresols (total) 69	₡,4,6-Trichlorophenol	73	(20 - 127)			SW846 8270C
PERCENT RECOVERY LIMITS		47	.(20 - 127)	44	(0-55)	SW846 8270C
PERCENT RECOVERY LIMITS Ritrobenzene-d5 76 (44 - 110) 53 (44 - 110) 52 (50 - 105) 52 (50 - 105) Terphenyl-d14 127 (11 - 158) 88 (11 - 158) 88 (11 - 158) 127 (10 - 131) 127 (10 - 130)		69	(22 - 115)			SW846 8270C
SURROGATE RECOVERY LIMITS (44 - 110)		45	(22 - 115)	42	(0-43)	SW846 8270C
### Titrobenzene-d5					RECOVERY	
53			RECOVERY		LIMITS	<u> </u>
Fluorobiphenyl 77 (50 - 105) 52 (50 - 105) Terphenyl-dl4 127 (11 - 158) 88 (11 - 158) henol-d5 59 (10 - 131) 2-Fluorophenol 47 (10 - 130)					(44 - 110)	
52 (50 - 105) Terphenyl-d14 127 (11 - 158) 88 (11 - 158) henol-d5 59 (10 - 131) 2-Fluorophenol 47 (10 - 130)					•	
Terphenyl-d14 127 88 (11 - 158) henol-d5 59 (10 - 131) 35 (10 - 131) 2-Fluorophenol 47 (10 - 130)	•				(50 - 10	5)
88 (11 - 158) henol-d5 59 (10 - 131) 35 (10 - 131) 2-Fluorophenol 47 (10 - 130)			52		(50 - 10	5)
henol-d5 59 (10 - 131) 35 (10 - 131) 2-Fluorophenol 47 (10 - 130)	Terphenyl-d14		127			
35 (10 - 131) 2-Fluorophenol 47 (10 - 130)			98		(11 - 15	3)
2-Fluorophenol 47 (10 - 130)	henol-d5		59		(10 - 13)	7)
·			35		(10 - 13	1)
•	2-Fluorophenol		47		(10 - 13	0)
			18			

(Continued on next page)

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127

Work Order #...: D225A10L-MS

Matrix....: SOLID

MS Lot-Sample #: A9I020127-004

D225A10M-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2,4,6-Tribromophenol	80 50	(10 - 156) (10 - 156)

NOTE(S):

- Hold print denotes control parameters
 - a. Spiked analyte recovery is outside stated control fimits.
 - p. Relative percent difference (RPD) is outside stated control limits.

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D225210L-MS Matrix.....: SOLID

■MS Lot-Sample #: A9I020127-001 D225210M-MSD

Date Sampled...: 08/23/99 14:00 Date Received..: 09/02/99

Leach Batch #...: P924701 Prep Batch #...: 9250215

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
o-Cresol	37 a	(46 - 109)			SW846 8270C
	55 p	(46 - 109)	40	(0-32)	SW846 8270C
■m-Cresol & p-Cresol	47	(46 - 109)			SW846 8270C
	59	(46 - 109)	22	(0-32)	SW846 8270C
1,4-Dichlorobenzene	65	(34 - 105)			SW846 8270C
	62	(34 - 105)	4.8	(0-21)	SW846 8270C
2,4-Dinitrotoluene	78	(10 - 154)			SW846 8270C
	76	(10 - 154)	2.8	(0-42)	SW846 8270C
llexachlorobenzene	89	(33 - 123)			SW846 8270C
•	89	(33 - 123)	0.65	(0-23)	SW846 8270C
Hexachlorobutadiene	67	(27 - 107)			SW846 8270C
	63	(27 - 107)	5.2	(0-24)	SW846 8270C
liexachloroethane	63	(24 - 107)			SW846 8270C
	59	(24 - 107)	7.3	(0-20)	SW846 8270C
Nitrobenzene	78	(40 - 118)			SW846 8270C
	75	(40 - 118)	4.7	(0-25)	SW846 8270C
Pentachlorophenol	75	(10 - 148)			SW846 8270C
	72	(10 - 148)	5.0	(0-75)	SW846 8270C
Pyridine	46	(22 - 96)			SW846 8270C
4	38	(22 - 96)	19	(0-52)	SW846 8270C
2,4,5-Trichlorophenol	75	(25 - 136)			SW846 8270C
	73	(25 - 136)	2.6	(0-62)	SW846 8270C
<pre>42,4,6-Trichlorophenol</pre>	72	(20 - 127)			SW846 8270C
	71	. (20 - 127)	0.97	(0-55)	SW846 8270C
Cresols (total)	44	(22 - 115)			SW846 8270C
	58	(22 - 115)	28	(0-43)	SW846 8270C
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	_
Nitrobenzene-d5		77		(44 - 110	<u>)</u>
		74		(44 - 110	
2 Fluorobiphenyl		77		(50 - 105)
		74		(50 - 105)
Terphenyl d14		116		(11 - 158)
		111		(11 - 158)
_heno1 -d5		58		(10 - 131	
4		52		(10 - 131)
2-Fluorophenol		38		(10 - 130	
-		26		(10 - 130	

(Continued on next page)

TCLP GC/MS Semivolatiles

Client Lot #...: A9I020127

Work Order #...: D225210L-MS

Matrix....: SOLID

■MS Lot-Sample #: A9I020127-001

D225210M-MSD

SURROGATE	PERCENT <u>RECOVERY</u>	RECOVERY LIMITS
2,4,6-Tribromophenol	80	(10 - 156)
	80	(10 - 156)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

- Bold print denotes control parameters
 - p. Relative percent difference (RPD) is outside stated control limits.
 - a. Spiked analyte recovery is outside stated control limits.

GC/MS Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D225710M-MS Matrix.....: SOLID

MS Lot-Sample #: A9I020127-003 D225710N-MSD

Date Sampled...: 08/25/99 17:00 Date Received..: 09/02/99 Prep Date....: 09/18/99 Analysis Date..: 09/22/99

Prep Batch #...: 9261107

Dilution Factor: 1 Moisture....:

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
o-Cresol	10 a	(46 - 109)			SW846 8270C
	10 a	(46 - 109)	2.7	(0-32)	SW846 8270C
■ m-Cresol & p-Cresol	12 a	(46 - 109)			SW846 8270C
-	11 a	(46 - 109)	7.2	(0-32)	SW846 8270C
1,4-Dichlorobenzene	55	(34 - 105)			SW846 8270C
	52	(34 - 105)	5.2	(0-21)	SW846 8270C
2,4-Dinitrotoluene	49	(10 - 154)			SW846 8270C
	51	(10 - 154)	3.0	(0-42)	SW846 8270C
<i>llexachlorobenzene</i>	70	(33 - 123)			SW846 8270C
	69	(33 - 123)	1.5	(0-23)	SW846 8270C
llexachlorobutadiene	61	(27 - 107)			SW846 8270C
	57	(27 - 107)	5.9	(0-24)	SW846 8270C
Hexachloroethane	58	(24 - 107)			SW846 8270C
	55	(24 - 107)	5.2	(0-20)	SW846 8270C
Nitrobenzene	63	(40 - 118)			SW846 8270C
	61	(40 - 118)	3.2	(0-25)	SW846 8270C
Pentachlorophenol	31	(10 - 148)			SW846 8270C
	39	(10 - 148)	24	(0-75)	SW846 8270C
Pyridine	41	(22 - 96)			SW846 8270C
4	39	(22 - 96)	5.3	(0-52)	SW846 8270C
2,4,5-Trichlorophenol	27	(25 - 136)			SW846 8270C
	31	(25 - 136)	15	(0-62)	SW846 8270C
<pre>2,4,6-Trichlorophenol</pre>	31	(20 - 127)			SW846 8270C
	33	(20 - 127)	5.6	(0-55)	SW846 8270C
Cresols (total)	11 a	(22 - 115)			SW846 8270C
•	11 a	(22 - 115)	5.8	(0-43)	SW846 8270C
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
■Nitrobenzene-d5		65		(44 - 110)
		63		(44 - 110)
2-Fluorobiphenyl		54		(50 - 105)
•		55		(50 - 105	()
Terphenyl-d14		70		(11 - 158)
		70		(11 - 158	
_Phenol-d5		12		(10 - 131	
		11		(10 - 131	
2-Fluorophenol		13		(10 - 130)
		12		(10 - 130)

(Continued on next page)

GC/MS Semivolatiles

Client Lot #...: A91020127

Work Order #...: D225710M-MS

Matrix....: SOLID

MS Lot-Sample #: A9I020127-003

D225710N-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2,4,6-Tribromophenol	36 38	(10 - 156) (10 - 156)
	30	(10 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a. Spiked analyte recovery is outside stated control limits.

TCLP GC Semivolatiles

Client Lot #...: A9I020127 Work Order #...: D2252117-MS Matrix.....: SOLID

MS Lot-Sample #: A9I020127-001 D2252118-MSD

Date Sampled...: 08/23/99 14:00 Date Received..: 09/02/99

Leach Date....: 09/04/99 Prep Date....: 09/10/99 Analysis Date..: 09/17/99

■ Leach Batch #..: P924701 Prep Batch #...: 9252314

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
2,4-D	86	(39 - 138)			SW846 8151A
	85	(39 - 138)	1.4	(0-20)	SW846 8151A
2,4,5-TP (Silvex)	81	(43 - 102)			SW846 8151A
	78	(43 - 102)	3.2	(0-18)	SW846 8151A
=		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	_
2,4-Dichlorophenylacetic acid		78		(53 - 168)
_		79		(53 - 168)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

On Inventor

MATRIX SPIKE SAMPLE EVALUATION REPORT

TCLP GC Semivolatiles

Client Lot #...: A91020127 Work Order #...: D2256115-MS Matrix.....: SOLID

MS Lot-Sample #: A9I020127-002 D2256116-MSD

■ Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

_ Dilution Factor: 1

	PERCENT	RECOVERY		RPD			
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO)	
■ 2,4-D	79	(39 - 138)			SW846	8151A	
	78	(39 - 138)	1.4	(0-20)	SW846	8151A	
2,4,5-TP (Silvex)	75	(43 - 102)			SW846	8151A	
•	78	(43 - 102)	4.1	(0-18)	SW846	8151A	
		PERCENT		RECOVERY			
SURROGATE		RECOVERY		LIMITS			
2,4-Dichlorophenylacet	ic	75		(53 - 16	B)		
		75		(53 - 16)	в)		

NOTR(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

TCLP Metals

Date Sampled...: 08/23/99 14:00 Date Received..: 09/02/99

-	PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
_	MS Lot-Sample	e #: A9I020	0127-001 Prep Ba				
	Leach Date	: 09/04/	/99 Leach I	Batch #.	.: P924701		
	Arsenic	104	(50 - 150)		SW846 6010B	09/09-09/15/99	
-		104	(50 - 150) 0.48 Dilution Factor: 1	(0-20)	SW846 6010B	09/09-09/15/99	D225210W
	Barium	99	(50 - 150)		SW846 6010B	09/09-09/15/99	D225210X
-		98	(50 - 150) 0.70	(0-20)	SW846 6010B	09/09-09/15/99	D2252110
			Dilution Factor: 1				
_	Cadmium	100	(50 - 150)		SW846 6010B	09/09-09/15/99	D2252111
		99	(50 - 150) 0.76	(0-20)	SW846 6010B	09/09-09/15/99	D2252112
			Dilution Factor: 1				
_	Chromium	100	(50 - 150)		SW846 6010B	09/09-09/15/99	D2252113
		100	(50 - 150) 0.52	(0-20)	SW846 6010B	09/09-09/15/99	D2252114
			Dilution Factor: 1				
-	Lead	100	(50 - 150)		SW846 6010B	09/09-09/15/99	D2252115
		99	·	(0-20)	SW846 6010B	09/09-09/15/99	D2252116
-			Dilution Factor: 1				
	Selenium	112	(50 - 150)		SW846 6010B	09/09-09/15/99	D225210N
		111	(50 - 150) 1.6	(0-20)	SW846 6010B	09/09-09/15/99	D225210P
			Dilution Factor: 1				
	Mercury	91	(50 - 150)		SW846 7470A	09/09-09/10/99	D225210T
4	<u>-</u>	87	(50 - 150) 4.1		SW846 7470A	09/09-09/10/99	
			Dilution Factor: 1				
_	Silver	100	(50 - 150)		SW846 6010B	09/09-09/15/99	D225210Q
		100	(50 - 150) 0.52		SW846 6010B	09/09-09/15/99	D225210R
			Dilution Factor: 1				

MOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TCLP Metals

Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
_		0127-002 Prep B				
Leach Date	· ·		Batch #.	.: P925102		
Arsenic	105	(50 - 150)		SW846 6010B	09/10-09/15/99	D225610T
	104	(50 - 150) 0.82 Dilution Factor: 1	(0-20)	SW846 6010B	09/10-09/15/99	D225610U
Barium	99	(50 - 150)		SW846 6010B	09/10-09/15/99	D225610V
	99	(50 - 150) 0.36	(0-20)	SW846 6010B	09/10-09/15/99	D225610W
		Dilution Factor: 1				
Cadmium	101	(50 - 150)		SW846 6010B	09/10-09/15/99	D225610X
	101	(50 - 150) 0.22	(0-20)	SW846 6010B	09/10-09/15/99	
		Dilution Factor: 1				
Chromium	102	(50 - 150)		SW846 6010B	09/10-09/15/99	D2256111
	101	(50 - 150) 0.66	(0-20)	SW846 6010B	09/10-09/15/99	D2256112
		Dilution Factor: 1				
Lead	100	(50 - 150)		SW846 6010B	09/10-09/15/99	
	100	(50 - 150) 0.13	(0-20)	SW846 6010B	09/10-09/15/99	D2256114
		Dilution Factor: 1				
Selenium	114	(50 - 150)		SW846 6010B	09/10-09/15/99	D225610L
	118	(50 - 150) 2.9	(0-20)	SW846 6010B	09/10-09/15/99	
		Dilution Factor: 1			, , ,	
lercury	90	(50 - 150)		SW846 7470A	09/10-09/11/99	D225610Q
	93	(50 - 150) 3.0	(0-20)	SW846 7470A	09/10-09/11/99	D225610R
		Dilution Factor: 1,				
Silver	99	(50 - 150)		SW846 6010B	09/10-09/15/99	D225610N
	100	(50 - 150) 0.68	(0-20)	SW846 6010B	09/10-09/15/99	D225610P
		Dilution Factor: 1				

MOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9I020127 Work Order #...: D223W-SMP Matrix....: WASTE

D223W-DUP

Date Sampled...: 08/31/99 12:00 Date Received..: 09/01/99

** Moisture....: 100

	· BOIBCALC	100						
		DUPLICATE			RPD		PREPARATION-	PREP
	PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
41	Reactive Sulfide					SD Lot-Sample #:	A9I020121-001	
	ND	ND	mg/kg	0	(0-20)	SW846 7.3.4	09/14-09/19/99	9262116
		Dilut	ion Factor: 1					
_	Reactive Cyanide					SD Lot-Sample #:	A9I020121-001	
	ND	ND	mg/kg	0	(0-20)	SW846 7.3.3	09/14-09/19/99	9262118
		Diluti	ion Factor: 1					

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9I020127 Work Order #...: D2256-SMP Matrix.....: SOLID

D2256-DUP

Date Sampled...: 08/24/99 11:00 Date Received..: 09/02/99

Moisture....:

		DUPLICATE			RPD		PREPARATION-	PREP
	PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
-	Reactive Cyanide					SD Lot-Sample #:	A9I020127-002	
	ND	ИD	mg/kg	0	(0-20)	SW846 7.3.3	09/14-09/19/99	9262118
		Dilu	ution Factor: 1					
	Reactive Sulfide					SD Lot-Sample #:	A9I020127-002	
	ND	ND	mg/kg	0	(0-20)	SW846 7.3.4	09/14-09/19/99	9262116
_		Dilu	ition factor: 1					
	pH (solid)					SD Lot-Sample #:	A9I020127-002	
	8.8	8.8	No Units	0.23	(0-20)	SW846 9045C	09/02/99	9252464
-		Dilu	ition Factor: 1					

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9I020127 Work Order #...: D24MP-SMP Matrix.....: SOLID

D24MP-DUP

Date Sampled...: 08/27/99 11:00 Date Received..: 09/03/99

*** Moisture....:** 13

		DUPLICATE			RPD		PREPARATION-	PREP
	PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
,	Flashpoint					SD Lot-Sample #:	A9I030238-001	
	>180	>180	deg F	0.0	(0-20)	SW846 1010	09/22/99	9265406

Dilution Factor: 1

CHAIN OF CUSTODY

A 2664

Project Manager Rich Stuck Sampled By Time C) Down								Street Address 4101 Shuifle Price N.W									
																	City, State, Zip Code North Contar, OH Phone No. (350) 966-2590
								Turnaround: At Standard Rush Date Results Required: 9-16-99							ANALYSIS REQUESTED		
SAMPLE IDENTIFICATION	DATE	TIME	сомр.	GRAB	SAMPLE TYPE (MATRIX	NUMBER OF CONTAINERS	(3)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							LABEL NUMBERS		
8,11 - UN	8-23	1400	X		SOIL	1	X			f				MW	-2		
8.11-002	8-24	1100	X			/	X							mu-			
8.11-003	8.25	1700	*			/	X	ļ				ļ	ļ	mw-9	18 mw-5		
3.11-004			*		1	/	*							mw	· 6		
								-									
	ļ. <u></u>							-									
					ļ	_											
	-				-				 								
	-	}						-									
CHAIN OF CUSTOD	<u></u>	l	 	DATE	L	TIME	 -	<u> </u>	SHIDDIN	AC INEO	DITAMB	<u> </u>	 	1			
					9 1	515	Name (SHIPPING INFORMATION Name of Carrier Received at lab by: 211.10.105							Della ulti	10 10	
Received by:							Airbill	Name of Carrier Received at lab by: P111(1) Airbill No. Date: P0903 Time: D120A								A_	
Relinquished by:							Comm	ents/Spec	cial Instru	ctions:	ATTA			çm, ti			
Received by:							.1										
Relinquished by:							OEPA-5.000 MOB ODER 557-09 Rowsy Watterworth										
Received by:							1 ~							,			